满分5 > 高中数学试题 >

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( ) A...

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
命题“∃x∈R,使x2+ax-4a<0为假命题”,等价于命题“∀x∈R,使x2+ax-4a≥0为真命题”,故△=a2+16a≤0,由此得到-16≤a≤0;由-16≤a≤0,知△=a2+16a≤0,故命题“∀x∈R,使x2+ax-4a≥0为真命题”,所以命题“∃x∈R,使x2+ax-4a<0为假命题”.由此得到命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 【解析】 ∵命题“∃x∈R,使x2+ax-4a<0为假命题”, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴△=a2+16a≤0, ∴-16≤a≤0, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”; ∵-16≤a≤0, ∴△=a2+16a≤0, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴命题“∃x∈R,使x2+ax-4a<0为假命题”, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”. 故命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 故选C.
复制答案
考点分析:
相关试题推荐
下列推理是归纳推理的是( )
A.A,B为定点,动点P满足||PA|-|PB||=2a<|AB|(a>0),则动点P的轨迹是以A,B为焦点的双曲线
B.由a1=2,an=3n-1求出S1,S2,S3,猜想出数列{an}的前n项和Sn的表达式
C.由圆x2+y2=r2的面积S=πr2,猜想出椭圆manfen5.com 满分网的面积S=πab
D.科学家利用鱼的沉浮原理制造潜水艇
查看答案
设函数f(x)=x2-x-2,x∈[-5,5].若从区间[-5,5]内随机选取一个实数x,则所选取的实数x满足f(x)≤0的概率为( )
A.0.5
B.0.4
C.0.3
D.0.2
查看答案
设集合A={1,2,4,6},B={2,3,5},则韦恩图中阴影部分表示的集合( )
manfen5.com 满分网
A.{2}
B.{3,5}
C.{1,4,6}
D.{3,5,7,8}
查看答案
已知函数f(x)=manfen5.com 满分网sin2xsinφ+cos2xcosφ-manfen5.com 满分网sin(manfen5.com 满分网+φ)(0<φ<π),其图象过点(manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点manfen5.com 满分网
(1)求f(x)的解析式;
(2)已知manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,求f(α-β)的值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.