满分5 > 高中数学试题 >

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上. (...

manfen5.com 满分网如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当manfen5.com 满分网且E为PB的中点时,求AE与平面PDB所成的角的大小.
(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB; (Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可. (Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD, ∵PD⊥底面ABCD, ∴PD⊥AC,∴AC⊥平面PDB, ∴平面AEC⊥平面PDB. (Ⅱ)【解析】 设AC∩BD=O,连接OE, 由(Ⅰ)知AC⊥平面PDB于O, ∴∠AEO为AE与平面PDB所的角, ∴O,E分别为DB、PB的中点, ∴OE∥PD,, 又∵PD⊥底面ABCD, ∴OE⊥底面ABCD,OE⊥AO, 在Rt△AOE中,, ∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.
复制答案
考点分析:
相关试题推荐
等比数列{an}中,已知a1=2,a4=16
(I)求数列{an}的通项公式;
(Ⅱ)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn
查看答案
已知函数f(x)=Asin(ωx+φ),x∈R(其中manfen5.com 满分网)的周期为π,且图象上一个最低点为manfen5.com 满分网
(Ⅰ)求f(x)的解析式;  
(Ⅱ)当manfen5.com 满分网,求f(x)的值域; 
(Ⅲ)求f(x)的单调递增区间.
查看答案
已知manfen5.com 满分网,则向量manfen5.com 满分网与向量manfen5.com 满分网的夹角是    查看答案
过椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为    查看答案
已知向量manfen5.com 满分网=(3,1),manfen5.com 满分网=(1,3),manfen5.com 满分网=(k,7),若(manfen5.com 满分网)∥manfen5.com 满分网,则k=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.