满分5 > 高中数学试题 >

某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2...

某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;
区间[25,30)[30,35)[35,40)[40,45)[45,50]
人数5050a150b
(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

manfen5.com 满分网
(I)由题设中频率分布直方图再结合频率、频数及样本容量之间的关系可得a、b的值; (II)根据分成抽样的定义知:第1,2,3组各部分的人数的比例为1:1:4,则共抽取6人时,所以第1,2,3组三个年龄段应分别抽取的人数为1,1,4. (III)设第1组的1位同学为A,第2组的1位同学为B,第3组的4位同学为C1,C2,C3,C4,列出所有情况,根据古典概型运算公式计算即可. 【解析】 (Ⅰ)由题设可知,a=0.08×5×500=200,b=0.02×5×500=50. …(2分) (Ⅱ) 因为第1,2,3组共有50+50+200=300人, 利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为: 第1组的人数为, 第2组的人数为, 第3组的人数为, 所以第1,2,3组分别抽取1人,1人,4人.                …(6分) (Ⅲ)设第1组的1位同学为A,第2组的1位同学为B,第3组的4位同学为C1,C2,C3,C4, 则从六位同学中抽两位同学有:(A,B),(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),(B,C2),(B,C3),(B,C4),(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4), 共15种可能.   …(10分) 其中2人年龄都不在第3组的有:(A,B),共1种可能,…(12分) 所以至少有1人年龄在第3组的概率为.      …(13分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.
(1)求证:AD⊥平面PQB;
(2)若平面PAD⊥平面ABCD,且manfen5.com 满分网,求四棱锥M-ABCD的体积.
查看答案
设数列{an}的前n项和为Sn,且Sn=2an-3(n=1,2,…).
(Ⅰ)证明:数列{an}是等比数列;
(Ⅱ)若数列{bn}满足bn=an+2n(n=1,2,…),求数列{bn}的前n项和为Tn
查看答案
已知△ABC的角A、B、C所对的边分别是a、b、c,设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求证:△ABC为等腰三角形;
(2)若manfen5.com 满分网manfen5.com 满分网,边长c=2,角C=manfen5.com 满分网,求△ABC的面积.
查看答案
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-5 不等式选讲)
若任意实数x使m≥|x+2|-|5-x|恒成立,则实数m的取值范围是   
B.(选修4-1 几何证明选讲)
如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是   
C.(选修4-4坐标系与参数方程)
极坐标系下,直线manfen5.com 满分网与圆manfen5.com 满分网的公共点个数是   
manfen5.com 满分网 查看答案
观察下列不等式:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,…由以上不等式推测到一个一般的结论:对于n∈N*manfen5.com 满分网    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.