满分5 > 高中数学试题 >

在平面直角坐标系中,已知曲线C上任意一点P到两个定点和的距离之和为4. (1)求...

在平面直角坐标系中,已知曲线C上任意一点P到两个定点manfen5.com 满分网manfen5.com 满分网的距离之和为4.
(1)求曲线C的方程;
(2)设过(0,-2)的直线l与曲线C交于A、B两点,以线段AB为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不是,请说明理由.
(1)利用椭圆的定义即可求出; (2)先假设符合条件的直线l存在,一方面可利用=0;另一方面把直线的方程与椭圆的方程联立,在△>0的条件下可利用根与系数的关系得到关系式,进而即可得出答案. 【解析】 (1)根据椭圆的定义,可知动点P的轨迹为椭圆, 其中a=2,c=,则. 所以动点P的轨迹方程为. (2)当直线l的斜率不存在时,不满足题意. 当直线l的斜率存在时,设直线l的方程为y=kx-2,设A(x1,y1),B(x2,y2), 若,则x1x2+y1y2=0. ∵y1=kx1-2,y2=kx2-2,∴. ∴(1+k2)x1x2-2k(x1+x2)+4=0.…① 由方程组得(1+4k2)x2-16kx+12=0. ∵△=162k2-4×12×(1+4k2)>0,∴…② 则,,代入①,得.即k2=4,解得k=2或k=-2,满足②式. 因此存在直线l,其方程为y=2x-2或y=-2x-2.
复制答案
考点分析:
相关试题推荐
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;
区间[25,30)[30,35)[35,40)[40,45)[45,50]
人数5050a150b
(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.
(1)求证:AD⊥平面PQB;
(2)若平面PAD⊥平面ABCD,且manfen5.com 满分网,求四棱锥M-ABCD的体积.
查看答案
设数列{an}的前n项和为Sn,且Sn=2an-3(n=1,2,…).
(Ⅰ)证明:数列{an}是等比数列;
(Ⅱ)若数列{bn}满足bn=an+2n(n=1,2,…),求数列{bn}的前n项和为Tn
查看答案
已知△ABC的角A、B、C所对的边分别是a、b、c,设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求证:△ABC为等腰三角形;
(2)若manfen5.com 满分网manfen5.com 满分网,边长c=2,角C=manfen5.com 满分网,求△ABC的面积.
查看答案
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-5 不等式选讲)
若任意实数x使m≥|x+2|-|5-x|恒成立,则实数m的取值范围是   
B.(选修4-1 几何证明选讲)
如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是   
C.(选修4-4坐标系与参数方程)
极坐标系下,直线manfen5.com 满分网与圆manfen5.com 满分网的公共点个数是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.