满分5 > 高中数学试题 >

已知圆,定点,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足. (I)求...

已知圆manfen5.com 满分网,定点manfen5.com 满分网,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足manfen5.com 满分网
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设manfen5.com 满分网,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
(I)点Q在NP上,点G在MP上,且满足故有|GN|+|GM|=|MP|=6,由椭圆的定义知G点的轨迹是以M、N为焦点的椭圆,由定义写出其标准方程即可得到点G的轨迹C的方程. (II),所以四边形OASB为平行四边形,若存在l使得||=||,则四边形OASB必为矩形即有,令A(x1,y1),B(x2,y2),则有x1x2+y1y2=0,由直线l与曲线C联立求利用根与系数的关系求出x1x2,y1y2的参数表达式,代入求直线的斜率k,若能求出,则说明存在,若不能求出,则不存在. 【解析】 (I)Q为PN的中点且GQ⊥PN⇒GQ为PN的中垂线⇒|PG|=|GN| ∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距, ∴短半轴长b=2,∴点G的轨迹方程是(5分) (II)因为,所以四边形OASB为平行四边形 若存在l使得||=||,则四边形OASB为矩形∴ 若l的斜率不存在,直线l的方程为x=2, 由得∴,与矛盾, 故l的斜率存在.(7分) 设l的方程为y=k(x-2),A(x1,y1),B(x2,y2) 由 ∴① y1y2=[k(x1-2)][k(x2-2)]=②(9分) 把①、②代入x1x2+y1y2=0得 ∴存在直线l:3x-2y-6=0或3x+2y-6=0使得四边形OASB的对角线相等.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx+4a,a,b∈R,当x=2,f(x)有极值manfen5.com 满分网
(1)求函数f(x)的解析式;
(2)若方程f(x)=k有3个解,求实数k的取值范围.
查看答案
某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨收费1.8元,当用水超过4吨时,超过部分每吨收费3元.某月甲乙两户共交水费y元,已知甲、乙两户用水量分别为5x,4x(吨)
(1)求y关于x的函数关系;
(2)当甲、乙两户共交水费为30.9元时,分别求出甲、乙两户该月的用水量和水费.
查看答案
已知函数f(x)=manfen5.com 满分网
(1)若tanx=-2,求f(x)的值
(2)求函数y=cotx[f(x)]的定义域和值域.
查看答案
已知数列{an}满足:a1=1,an+1=manfen5.com 满分网(n∈N*
(1)证明:数列{manfen5.com 满分网}为等差数列,并求{an}的通项公式
(2)如果数列{manfen5.com 满分网}的前n项和为Sn,求Sn
查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,且2sinmanfen5.com 满分网+cos2C=1,a=1,b=2,求角C和边c.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.