满分5 >
高中数学试题 >
已知平面向量、的夹角为60°,则=(,1),||=1,则|+2|═( ) A.2...
已知平面向量
、
的夹角为60°,则
=(
,1),|
|=1,则|
+2
|═( )
A.2
B.
C.2
D.2
考点分析:
相关试题推荐
的展开式中常数项是( )
A.-160
B.-20
C.20
D.160
查看答案
已知集合U=R,A={x|x
2-5x+6≥0},那么∁
UA=( )
A.{x|x<2或x>3}
B.{x|2<x<3}
C.{x|x≤2或x≥3}
D.{x|2≤x≤3}
查看答案
已知函数g(x)=ax
2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
.
(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2
x)-k•2
x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程
有三个不同的实数解,求实数k的范围.
查看答案
定义x
1,x
2,…,x
n的“倒平均数”为
(n∈N
*).已知数列{a
n}前n项的“倒平均数”为
,记c
n=
(n∈N
*).
(1)比较c
n与c
n+1的大小;
(2)设函数f(x)=-x
2+4x,对(1)中的数列{c
n},是否存在实数λ,使得当x≤λ时,f(x)≤c
n对任意n∈N
*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{b
n}满足b
1=1,b
2=b(b∈R且b≠0),b
n=|b
n-1-b
n-2|(n∈N
*且n≥3),且{b
n}是周期为3的周期数列,设T
n为{b
n}前n项的“倒平均数”,求
T
n.
查看答案
已知双曲线C的方程为x
2-
=1,点A(m,2m)和点B(n,-2n)(其中m和n均为正数)是双曲线C的两条渐近线上的两个动点,双曲线C上的点P满足
=λ•
(其中λ∈[
,3]).
(1)用λ的解析式表示mn;
(2)求△AOB(O为坐标原点)面积的取值范围.
查看答案