满分5 > 高中数学试题 >

已知函数,其中a>0. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)若直线x-y-1...

已知函数manfen5.com 满分网,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)
(Ⅰ)先求导函数,直接让导函数大于0求出增区间,导函数小于0求出减区间即可; (Ⅱ)直接利用切线的斜率即为切点处的导数值以及切点是直线与曲线的共同点联立方程即可求实数a的值; (Ⅲ)先求出g(x)的导函数,分情况讨论出函数在在区间[1,e]上的单调性,进而求得其在区间[1,e]上的最大值. 【解析】 (Ⅰ)′因为函数, ∴f′(x)== f′(x)>0⇒0<x<2,f′(x)<0⇒x<0,x>2, 故函数在(0,2)上递增,在(-∞,0)和(2,+∞)上递减. (Ⅱ)设切点为(x,y), 由切线斜率k=1=,⇒x3=-ax+2,① 由x-y-1=x--1=0⇒(x2-a)(x-1)=0⇒x=1,x=±. 把x=1代入①得a=1, 把x=代入①得a=1, 把x=-代入①得a=-1, ∵a>0. 故所求实数a的值为1 (Ⅲ)∵g(x)=xlnx-x2f(x)=xlnx-a(x-1), ∴g′(x)=lnx+1-a,且g′(1)=1-a,g′(e)=2-a. 当a<1时,g′(1)>0,g′(e)>0,故g(x)在区间[1,e]上递增,其最大值为g(e)=a+e(1-a); 当1<a<2时,g′(1)<0,g′(e)>0,故g(x)在区间[1,e]上先减后增且g(1)=0,g(e)>0.所以g(x)在区间[1,e]上的最大值为g(e)=a+e(1-a); 当a>2时,g′(1),0,g′(e)<0,g(x)在区间[1,e]上递减,故最大值为g(1)=0.
复制答案
考点分析:
相关试题推荐
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网 查看答案
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为manfen5.com 满分网.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为manfen5.com 满分网
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.
查看答案
设△ABC中的内角A,B,C所对的边长分别为a,b,c,且manfen5.com 满分网,b=2.
(Ⅰ)当manfen5.com 满分网时,求角A的度数;
(Ⅱ)求△ABC面积的最大值.
查看答案
已知数列{an}的各项均为正整数,对于n=1,2,3,…,有manfen5.com 满分网,当a1=11时,a100=    ;若存在m∈N*,当n>m且an为奇数时,an恒为常数p,则p的值为    查看答案
某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有    种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有    种. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.