满分5 > 高中数学试题 >

若A1,A2,…,Am为集合A={1,2,…,n}(n≥2且n∈N*)的子集,且...

若A1,A2,…,Am为集合A={1,2,…,n}(n≥2且n∈N*)的子集,且满足两个条件:
①A1∪A2∪…∪Am=A;
②对任意的{x,y}⊆A,至少存在一个i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.则称集合组A1,A2,…,Am具有性质P.
如图,作n行m列数表,定义数表中的第k行第l列的数为akl=manfen5.com 满分网n=7.
a11a12a1m
a21a22a2m
an1an2anm
(Ⅰ)当n=4时,判断下列两个集合组是否具有性质P,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:A1={1,3},A2={2,3},A3={4};
集合组2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)当n=7时,若集合组A1,A2,A3具有性质P,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合A1,A2,A3
(Ⅲ)当n=100时,集合组A1,A2,…,At是具有性质P且所含集合个数最小的集合组,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的个数)
(Ⅰ)由集合组1具有性质P,所对应的数表知集合组2不具有性质P,因为存在{2,3}⊆{1,2,3,4},有Ai∩{x,y}={x}或{y}矛盾,所以集合组A1={2,3,4},A2={2,3},A3={1,4}不具有性质P. (Ⅱ)由题意得:A1={3,4,5,7},A2={2,4,6,7},A3={1,5,6,7}. (Ⅲ)设A1,A2,…,At所对应的数表为数表M,因为集合组A1,A2,…,At为具有性质P的集合组,所以集合组A1,A2,…,At满足条件①和②,下面详细分析条件①和②,求得t的值及|A1|+|A2|+…|At|的最小值. 【解析】 (Ⅰ)【解析】 集合组1具有性质P.…(1分) 所对应的数表为: 集合组2不具有性质P.…(4分) 因为存在{2,3}⊆{1,2,3,4}, 有{2,3}∩A1={2,3},{2,3}∩A2={2,3},{2,3}∩A3=∅, 与对任意的{x,y}⊆A,都至少存在一个i∈{1,2,3},有Ai∩{x,y}={x}或{y}矛盾,所以集合组A1={2,3,4},A2={2,3},A3={1,4}不具有性质P.…(5分) (Ⅱ) A1={3,4,5,7},A2={2,4,6,7},A3={1,5,6,7}.…(8分) (注:表格中的7行可以交换得到不同的表格,它们所对应的集合组也不同) (Ⅲ)设A1,A2,…,At所对应的数表为数表M, 因为集合组A1,A2,…,At为具有性质P的集合组, 所以集合组A1,A2,…,At满足条件①和②, 由条件①:A1∪A2∪…∪At=A, 可得对任意x∈A,都存在i∈{1,2,3,…,t}有x∈Ai, 所以axi=1,即第x行不全为0, 所以由条件①可知数表M中任意一行不全为0.…(9分) 由条件②知,对任意的{x,y}⊆A,都至少存在一个i∈{1,2,3,…,t},使Ai∩{x,y}={x}或{y},所以axi,ayi一定是一个1一个0,即第x行与第y行的第i列的两个数一定不同. 所以由条件②可得数表M中任意两行不完全相同.…(10分) 因为由0,1所构成的t元有序数组共有2t个,去掉全是0的t元有序数组,共有2t-1个,又因数表M中任意两行都不完全相同,所以100≤2t-1, 所以t≥7. 又t=7时,由0,1所构成的7元有序数组共有128个,去掉全是0的数组,共127个,选择其中的100个数组构造100行7列数表,则数表对应的集合组满足条件①②,即具有性质P. 所以t=7.…(12分) 因为|A1|+|A2|+…+|At|等于表格中数字1的个数, 所以,要使|A1|+|A2|+…+|At|取得最小值,只需使表中1的个数尽可能少, 而t=7时,在数表M中,1的个数为1的行最多7行;1的个数为2的行最多C72=21行;1的个数为3的行最多C73=35行;1的个数为4的行最多C74=35行; 因为上述共有98行,所以还有2行各有5个1, 所以此时表格中最少有7+2×21+3×35+4×35+5×2=304个1. 所以|A1|+|A2|+…+|At|的最小值为304.…(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,且椭圆上一点与椭圆的两个焦点构成的三角形周长为manfen5.com 满分网
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.
查看答案
已知函数manfen5.com 满分网,其中e为自然对数的底数.
(Ⅰ)当a=2时,求曲线y=f(x)在(1,f(1))处的切线与坐标轴围成的面积;
(Ⅱ)若函数f(x)存在一个极大值点和一个极小值点,且极大值与极小值的积为e5,求a的值.
查看答案
甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记X为选出的4名选手中女选手的人数,求X的分布列和期望.
查看答案
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使manfen5.com 满分网,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)设点N是线段BD上一个动点,试确定N点的位置,使得manfen5.com 满分网,并证明你的结论.manfen5.com 满分网
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若manfen5.com 满分网,求sin2x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.