满分5 > 高中数学试题 >

已知抛物线P:x2=2py (p>0). (Ⅰ)若抛物线上点M(m,2)到焦点F...

已知抛物线P:x2=2py (p>0).
(Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.
(ⅰ)求抛物线P的方程;
(ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;
(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接AO,BO并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.
(Ⅰ)(ⅰ)欲求抛物线方程,需求出p值,根据抛物线上点到焦点F的距离与到准线距离相等,以及抛物线上点M(m,2)到焦点F的距离为3,可解得 p,问题得解. (ⅱ)求出E点坐标,设出过E的抛物线P的切线方程,再根据直线方程与抛物线方程联立,△=0,即可求出k值,进而求出切线方程. (Ⅱ)设出A,B两点坐标,以及过焦点F的动直线l方程,代入抛物线方程,求x1x2,x1+x2,再求C,D点坐标,用含x1,x2的式子表示坐标,在证共线即可. 【解析】 (Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点M(m,2)到焦点F的距离与到准线距离相等, 即M(m,2)到的距离为3; ∴,解得p=2. ∴抛物线P的方程为x2=4y.                                        (ⅱ)抛物线焦点F(0,1),抛物线准线与y轴交点为E(0,-1), 显然过点E的抛物线的切线斜率存在,设为k,切线方程为y=kx-1. 由,消y得x2-4kx+4=0, △=16k2-16=0,解得k=±1.                                     ∴切线方程为y=±x-1.                                           (Ⅱ)直线l的斜率显然存在,设l:, 设A(x1,y1),B(x2,y2), 由消y得 x2-2pkx-p2=0.   且△>0. ∴x1+x2=2pk,x1•x2=-p2; ∵A(x1,y1),∴直线OA:, 与联立可得,同理得.           ∵焦点, ∴,, ∴== ∴以CD为直径的圆过焦点F.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx-ax2+(a-2)x.
(Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)求函数y=f(x)在[a2,a]上的最大值.
查看答案
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(Ⅰ)求直线BD与平面BEC'所成角的正弦值;
(Ⅱ)求二面角D-BE-C'的余弦值.

manfen5.com 满分网 查看答案
张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为manfen5.com 满分网;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为manfen5.com 满分网manfen5.com 满分网
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数X的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
关于概率统计问题,几次考查都没有将概率与统计图表结合起来,请老师们注意,在复练时要有意识的进行练习.

manfen5.com 满分网 查看答案
已知等差数列{an}的前n项和为Sn,a2=4,S5=35.
(Ⅰ)求数列{an}的前n项和Sn
(Ⅱ)若数列{bn}满足manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
如图所示,∠AOB=1rad,点Al,A2,…在OA上,点B1,B2,…在OB上,其中的每一个实线段和虚线段的长均为1个长度单位,一个动点M从O点出发,沿着实线段和以O为圆心的圆弧匀速运动,速度为l长度单位/秒,则质点M到达A3点处所需要的时间为    秒,质点M到达An点处所需要的时间为    秒.manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.