满分5 > 高中数学试题 >

在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都...

在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是manfen5.com 满分网
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率;
(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
(Ⅰ)教师甲在每场的6次投球中投进球的个数为X,X的所有可能取值为0,1,2,3,4,5,6由题意直接可知X~B(6,)即可求解 (Ⅱ)教师甲在一场比赛中获奖:分为三种情况(中4球,5球,6球)但都必须最后2个球都投进者,故所求的概率为. (Ⅲ)教师乙在某场比赛中的事件总数为:A66,而6个球中恰好投进了4个球的事件数为:A42×A44,故而教师乙在这场比赛中获奖的概率为:   根据(Ⅱ)知教师甲在一场比赛中获奖的概率为:,而,故教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等. 【解析】 (Ⅰ)X的所有可能取值为0,1,2,3,4,5,6. 依条件可知X~B(6,).(k=0,1,2,3,4,5,6) X的分布列为: X 1 2 3 4 5 6 P 所以=. 或因为X~B(6,),所以.即X的数学期望为4 (Ⅱ)设教师甲在一场比赛中获奖为事件A, 则=. 答:教师甲在一场比赛中获奖的概率为. (Ⅲ)设教师乙在这场比赛中获奖为事件B, 则. 即教师乙在这场比赛中获奖的概率为. 显然,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=
90°,侧面PAD⊥底面ABCD.若manfen5.com 满分网
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角A-PD-C的余弦值.

manfen5.com 满分网 查看答案
在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知manfen5.com 满分网
(Ⅰ)求sinC;
(Ⅱ)当c=2a,且manfen5.com 满分网时,求a.
查看答案
对于各数互不相等的整数数组(i1,i2,i3…in) (n是不小于3的正整数),对于任意的p,q∈{1,2,3,…,n},当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于    ;若数组(i1,i2,i3,…,in)中的逆序数为n,则数组(in,in-1,…,i1)中的逆序数为    查看答案
如图,在圆内接四边形ABCD中,对角线AC,BD相交于点E.已知manfen5.com 满分网,AE=2EC,∠CBD=30°,则∠CAB=    ,AC的长是   
manfen5.com 满分网 查看答案
执行如图所示的程序框图,若输入x=5.2,则输出y的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.