(I)设菱形对角线的交点为O,连接EO,可得OE是三角形APC的中位线,得到EO∥PC,结合直线与平面平行的判定定理,得到PC∥平面BDE;
(II)连接PO,利用等腰三角形的中线与高合一,得到OP⊥BD.再根据菱形ABCD中,BD⊥AC,结合直线与平面垂直的判定定理,得到BD⊥平面PAC.最后用平面与平面垂直的判定定理,得到平面PAC⊥平面BDE.
【解析】
(Ⅰ)设O为AB、CD的交点,连接EO
∵E,O分别为PA,AC的中点,
∴EO∥PC.
∵EO⊂平面BDE,PC⊄平面BDE
∴PC∥平面BDE.…(6分)
(Ⅱ)证明:连接OP
∵PB=PD,O为BD的中点
∴OP⊥BD.
又∵在菱形ABCD中,BD⊥AC
且OP∩AC=O
∴BD⊥平面PAC
∵BD⊂平面BDE
∴平面PAC⊥平面BDE. …(13分)