满分5 > 高中数学试题 >

设a∈R,函数f(x)=ex+a•e-x的导函数是f′(x),且f′(x)是奇函...

设a∈R,函数f(x)=ex+a•e-x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是manfen5.com 满分网,则切点的横坐标为( )
A.ln2
B.-ln2
C.manfen5.com 满分网
D.manfen5.com 满分网
已知切线的斜率,要求切点的横坐标必须先求出切线的方程, 我们可从奇函数入手求出切线的方程. 【解析】 对f(x)=ex+a•e-x求导得 f′(x)=ex-ae-x 又f′(x)是奇函数,故 f′(0)=1-a=0 解得a=1,故有 f′(x)=ex-e-x, 设切点为(x,y),则 , 得或(舍去), 得x=ln2.
复制答案
考点分析:
相关试题推荐
已知b>a,下列值:∫manfen5.com 满分网f(x)dx,∫manfen5.com 满分网|f(x)|dx,|∫manfen5.com 满分网|的大小关系为( )
A.|∫manfen5.com 满分网|≥∫manfen5.com 满分网|f(x)|dx≥∫manfen5.com 满分网f(x)d
B.∫manfen5.com 满分网|f(x)|dx≥|∫manfen5.com 满分网f(x)dx|≥∫manfen5.com 满分网f(x)d
C.∫manfen5.com 满分网|f(x)|dx=|∫manfen5.com 满分网f(x)dx|=∫manfen5.com 满分网f(x)d
D.∫manfen5.com 满分网|f(x)|dx=|∫manfen5.com 满分网f(x)dx|≥∫manfen5.com 满分网f(x)d
查看答案
若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0或y=f(x)的“自公切线”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=manfen5.com 满分网
对应的曲线中存在“自公切线”的有( )
A.①③
B.①④
C.②③
D.②④
查看答案
曲线y=manfen5.com 满分网与直线y=x-1及x=4所围成的封闭图形的面积为( )
A.2-ln2
B.4-21n2
C.4-ln2
D.21n2
查看答案
已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(2)当a=1时,若-2≤f(-1)≤1,-1≤f(1)≤3,试求f(2)的取值范围;
(3)对∀x∈[-1,1],都有|f′(x)|≤1,试求实数a的最大值,并求a取得最大值时f(x)的表达式.
查看答案
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(-a,0),点Q(0,y)在线段AB的垂直平分线上,且manfen5.com 满分网,求y的值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.