满分5 > 高中数学试题 >

已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足=ana...

已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足manfen5.com 满分网=anan+1(n∈N*).若 {bn}是公比为manfen5.com 满分网的等比数列
(1)求{an}的通项公式;
(2)若a=manfen5.com 满分网,Sn为{an}的前n项和,记Tn=manfen5.com 满分网manfen5.com 满分网为数列{Tn}的最大项,求n
(1)由题意可得=2,由此可推得=2,所以数列{an}奇数项偶数项均构成等比数列,分段可写出{an}的通项公式; (2)a=时,{an}为等比数列,可表示出Sn,进而表示出Tn,运用基本不等式可求得数列{Tn}的最大项及相应的n值; 【解析】 (1)=2, 又∵a1=1,a2=a(a>0), ∴an=. (2)若,则(n∈N*),则{an}为等比数列,公比为, 所以=. Tn==≤. 等号当且仅当,即n=4时取到, n=4.
复制答案
考点分析:
相关试题推荐
已知等比数列{an}满足an>0,n=l,2,…,且a5•a2n-5=22n(n≥3),则当n≥3时,log2a1+log2a2+log2a3+…+log2a2n-1=    查看答案
正项等比数列{an}中,若a5•a6=81,则log3a1+log3a10=    查看答案
设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-Sk=24,则k=    查看答案
在数列{an}和{bn}中,bn是an和an+1的等差中项,a1=2且对任意n∈N*都有3an+1-an=0,则{bn}的通项bn=    查看答案
在等比数列{an}中,a20+a21=10,a22+a23=20,则a24+a25=( )
A.40
B.70
C.30
D.90
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.