已知函数f(x)=ln(2ax+1)+

-x
2-2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=-

时,方程f(1-x)=

有实根,求实数b的最大值.
考点分析:
相关试题推荐
(理科)设椭圆

的右焦点为F
1,直线

与x轴交于点A,若

(其中O为坐标原点)
(1)求椭圆M的方程;
(2)设点P是椭圆M上的任意一点,线段EF为圆N:x
2+(y-2)
2=1的任意一条直径(E、F为直径的两个端点),求

的最大值.
查看答案
已知点(1,

)是函数f(x)=a
x(a>0,且a≠1)的图象上一点,等比数列{a
n}的前n项和为f(n)-c,数列{b
n}(b
n>0)的首项为c,且前n项和S
n满足:S
n-S
n-1=

+

(n≥2).
(1)求数列{a
n}和{b
n}的通项公式;
(2)若数列{c
n}的通项c
n=b
n
,求数列{c
n}的前n项和R
n;
(3)若数列{

}前n项和为T
n,问T
n>

的最小正整数n是多少?
查看答案
如图,在长方体ABCD-A
1B
1C
1D
1中,AD=AA
1=1,AB=2,点E在棱AB上移动.
(1)证明:D
1E⊥A
1D;
(2)当E为AB的中点时,求点E到面ACD
1的距离;
(3)AE等于何值时,二面角D
1-EC-D的大小为

.
查看答案
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.
查看答案
已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π),且函数y=f(2x+

)的图象关于直线x=

对称.
(1)求φ的值;
(2)若f(a-

)=

,求sin2a的值.
查看答案