将已知等式左边分子利用二倍角的余弦函数公式化简,分母利用两角和与差的余弦函数公式及特殊角的三角函数值化简,整理后约分得到cosx+sinx=,再将此等式左右两边平方,利用同角三角函数间的基本关系化简,求出2sinxcosx的值小于0,由x的范围得到sinx大于0,cosx小于0,再利用完全平方公式及同角三角函数间的基本关系求出cosx-sinx的值,与sinx+cosx的值联立组成方程组,求出方程组的解得到sinx与cosx的值,进而确定出tanx的值.
【解析】
∵==cosx+sinx=①,
∴(cosx+sinx)2=,即sin2x+2sinxcosx+cos2x=1+2sinxcosx=,
∴2sinxcosx=-<0,又0<x<π,
∴sinx>0,cosx<0,
∴(cosx-sinx)2=sin2x-2sinxcosx+cos2x=1-2sinxcosx=,
∴cosx-sinx=-②,
联立①②解得:cosx=-,sinx=,
则tanx=-.
故选A