满分5 > 高中数学试题 >

某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定...

某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80
元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求出最低总造价.

manfen5.com 满分网
(1)污水处理池的底面积一定,设宽为x米,可表示出长,从而得出总造价f(x),利用基本不等式求出最小值; (2)由长和宽的限制条件,得自变量x的范围,判断总造价函数f(x)在x的取值范围内的函数值变化情况,求得最小值. 【解析】 (1)设污水处理池的宽为x米,则长为米. 则总造价f(x)=400×(2x+)+248×2x+80×162=1296x++12960 =1296(x+)+12960≥1296×2×+12960=38880(元), 当且仅当x=(x>0),即x=10时,取等号. ∴当长为16.2米,宽为10米时总造价最低,最低总造价为38880元. (2)由限制条件知,∴10≤x≤16. 设g(x)=x+(10≤x≤16), 由函数性质易知g(x)在[10,16]上是增函数, ∴当x=10时(此时=16),g(x)有最小值,即f(x)有最小值 1296×(10+)+12960=38882(元). ∴当长为16米,宽为10米时,总造价最低,为38882元.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,求manfen5.com 满分网
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=manfen5.com 满分网,∠CDA=45°,求四棱锥P-ABCD的体积.
查看答案
已知等差数列{an}中,a1+a2+a3=27,a6+a8+a10=63
(1)求数列{an}的通项公式;
(2)令bn=manfen5.com 满分网,求数列{bn}的前n项的和Sn
查看答案
在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2
(1)求∠A;
(2)若manfen5.com 满分网,求b2+c2的取值范围.
查看答案
在互相垂直的两个平面中,下列命题中
①一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
②一个平面内的已知直线必垂直于另一个平面内的无数条直线;
③一个平面内的任意一直线必垂直于另一个平面内的无数条直线;
④过一个平面内的任意一点作垂直于另一个平面的直线必在第一个平面内;
正确命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.