满分5 > 高中数学试题 >

给定椭圆,称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其...

给定椭圆manfen5.com 满分网,称圆心在原点O,半径为manfen5.com 满分网的圆是椭圆C的“准圆”.若椭圆C的一个焦点为manfen5.com 满分网,其短轴上的一个端点到F的距离为manfen5.com 满分网
(I)求椭圆C的方程和其“准圆”方程.(II)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.
(I)由椭圆的方程与准圆的方程关系求得准圆的方程 (II)(1)由准圆x2+y2=4与y轴正半轴的交点为P(0,2), 设椭圆有一个公共点的直线为y=kx+2,与准圆方程联立,由椭圆与y=kx+2只有一个公共点,求得k.从而得l1,l2方程 (2)分两种情况①当l1,l2中有一条无斜率和②当l1,l2都有斜率处理. 【解析】 (I)因为,所以b=1 所以椭圆的方程为, 准圆的方程为x2+y2=4. (II)(1)因为准圆x2+y2=4与y轴正半轴的交点为P(0,2), 设过点P(0,2),且与椭圆有一个公共点的直线为y=kx+2, 所以,消去y,得到(1+3k2)x2+12kx+9=0, 因为椭圆与y=kx+2只有一个公共点, 所以△=144k2-4×9(1+3k2)=0, 解得k=±1. 所以l1,l2方程为y=x+2,y=-x+2. (2)①当l1,l2中有一条无斜率时,不妨设l1无斜率, 因为l1与椭圆只有一个公共点,则其方程为或, 当l1方程为时,此时l1与准圆交于点, 此时经过点(或)且与椭圆只有一个公共点的直线是y=1(或y=-1),即l2为y=1(或y=-1),显然直线l1,l2垂直; 同理可证l1方程为时,直线l1,l2垂直. ②当l1,l2都有斜率时,设点P(x,y),其中x2+y2=4, 设经过点P(x,y)与椭圆只有一个公共点的直线为y=t(x-x)+y, 则,消去y得到x2+3(tx+(y-tx))2-3=0, 即(1+3t2)x2+6t(y-tx)x+3(y-tx)2-3=0,△=[6t(y-tx)]2-4•(1+3t2)[3(y-tx)2-3]=0, 经过化简得到:(3-x2)t2+2xyt+1-y2=0, 因为x2+y2=4,所以有(3-x2)t2+2xyt+(x2-3)=0, 设l1,l2的斜率分别为t1,t2,因为l1,l2与椭圆都只有一个公共点, 所以t1,t2满足上述方程(3-x2)t2+2xyt+(x2-3)=0, 所以t1•t2=-1,即l1,l2垂直. 综合①②知:因为l1,l2经过点P(x,y),又分别交其准圆于点M,N,且l1,l2垂直, 所以线段MN为准圆x2+y2=4的直径,所以|MN|=4.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(0,x),manfen5.com 满分网=(1,1),manfen5.com 满分网=(x,0),manfen5.com 满分网=(y2,1)(其中x,y是实数),又设向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网,点P(x,y)的轨迹为曲线C.
(1)求曲线C的方程;
(2)设曲线C与y轴的正半轴的交点为M,过点M作一条直线l与曲线C交于另一点N,当|MN|=manfen5.com 满分网时,求直线 l 的方程.
查看答案
已知双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为    查看答案
已知点(2,3)在双曲线C:manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)上,C的焦距为4,则它的离心率为    查看答案
设F1,F2分别为椭圆manfen5.com 满分网的焦点,点A,B在椭圆上,若manfen5.com 满分网;则点A的坐标是    查看答案
已知双曲线manfen5.com 满分网的离心率为manfen5.com 满分网,焦距为2c,且2a2=3c,双曲线 上一点P满足manfen5.com 满分网(F1、F2为左右焦点),则|manfen5.com 满分网|•|manfen5.com 满分网|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.