满分5 >
高中数学试题 >
设,B={x|x>a},若A⊆B,则实数a的取值范围是( ) A. B. C.a...
设
,B={x|x>a},若A⊆B,则实数a的取值范围是( )
A.
B.
C.a≤1
D.a<1
考点分析:
相关试题推荐
如图,在正三棱柱ABC-A
1B
1C
1中,AA
1=AB,D是AC的中点.
(1)求证:B
1C∥平面A
1BD;
(2)求证:平面A
1BD⊥平面ACC
1A
1;
(3)求二面角A-A
1B-D的余弦值.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
AD=1,CD=
.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
查看答案
18、在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BC⊥平面PBD;
(2)设E为侧棱PC上一点,
,试确定λ的值,使得二面角E-BD-P的大小为45°.
查看答案
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,AB=BD=2CD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E为棱AD的中点.
(1)求证:DC⊥平面ABC;
(2)求BE与平面ABC所成角的正弦值大小.
查看答案
如图,已知直三棱柱ABC-A
1B
1C
1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A
1的中点.
(Ⅰ)求异面直线AB和C
1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A
1E⊥C
1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B
1C
1E的距离.
查看答案