满分5 > 高中数学试题 >

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列...

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为manfen5.com 满分网
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=manfen5.com 满分网,其中n=a+b+c+d)
(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率,做出喜爱打篮球的人数,进而做出男生的人数,填好表格. (2)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系. (3)喜爱打篮球的女生人数ξ的可能取值为0,1,2,通过列举得到事件数,分别计算出它们的概率,最后利用列出分布列,求出期望即可. 【解析】 (1)列联表补充如下:----------------------------------------(3分) 喜爱打篮球 不喜爱打篮球 合计 男生 20 5 25 女生 10 15 25 合计 30 20 50 (2)∵K2=≈8.333>7.879------------------------(5分) ∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.---------------------(6分) (3)喜爱打篮球的女生人数ξ的可能取值为0,1,2.-------------------------(7分) 其概率分别为P(ξ=0)=,P(ξ=1)=,P(ξ=2)= --------------------------(10分) 故ξ的分布列为: ξ 1 2 P --------------------------(11分) ξ的期望值为:Eξ=0×+1×+2×=---------------------(12分)
复制答案
考点分析:
相关试题推荐
某项实验,在100次实验中,成功率只有10%,进行技术改革后,又进行了100次试验.若要有97.5%以上的把握认为“技术改革效果明显”,实验的成功率最小应为多少?(要求:作出2×2列联表)(设P(x2≥5)=0.025)
查看答案
某企业的某种产品产量与单位成本统计数据如下:
月份123456
产量(千件)234345
单位成本(元/件)737271736968
b=manfen5.com 满分网,a=manfen5.com 满分网(用最小二乘法求线性回归方程系数公式
注:manfen5.com 满分网=x1y1+x2y2+…+xiyi+…+xnynmanfen5.com 满分网=x12+manfen5.com 满分网+…+xi2+…+manfen5.com 满分网
(1)试确定回归方程;
(2)指出产量每增加1件时,单位成本下降多少?
(3)假定产量为6件时,单位成本是多少?单位成本为70元/件时,产量应为多少件?
查看答案
某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为    的学生. 查看答案
从参加数学竞赛的1000名学生中抽取一个容量为50的样本,按系统抽样的方法,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为    查看答案
某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生抽了95人,则该校的女生人数应是    人. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.