满分5 > 高中数学试题 >

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=. 等边三角...

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=manfen5.com 满分网
等边三角形ADB以AB为轴运动.
(Ⅰ)当平面ADB⊥平面ABC时,求CD;
(Ⅱ)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

manfen5.com 满分网
(Ⅰ)取出AB中点E,连接DE,CE,由等边三角形ADB可得出DE⊥AB,又平面ADB⊥平面ABC,故DE⊥平面ABC,在Rt△DEC中用勾股定理求出CD. (Ⅱ)总有AB⊥CD,当D∈面ABC内时,显然有AB⊥CD,当D在而ABC外时,可证得AB⊥平面CDE,定有AB⊥CD. 【解析】 (Ⅰ)取AB的中点E,连接DE,CE, 因为ADB是等边三角形,所以DE⊥AB. 当平面ADB⊥平面ABC时, 因为平面ADB∩平面ABC=AB, 所以DE⊥平面ABC, 可知DE⊥CE 由已知可得,在Rt△DEC中,. (Ⅱ)当△ADB以AB为轴转动时,总有AB⊥CD. 证明:(ⅰ)当D在平面ABC内时,因为AC=BC,AD=BD, 所以C,D都在线段AB的垂直平分线上,即AB⊥CD. (ⅱ)当D不在平面ABC内时,由(Ⅰ)知AB⊥DE.又因AC=BC,所以AB⊥CE. 又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD. 综上所述,总有AB⊥CD.
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

manfen5.com 满分网 查看答案
如图,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.
(Ⅰ)求证:AD⊥平面BC C1B1
(Ⅱ)设E是B1C1上的一点,当manfen5.com 满分网的值为多少时,A1E∥平面ADC1?请给出证明.

manfen5.com 满分网 查看答案
在正方体ABCD-A1B1C1D1中,O是AC的中点,E是线段D1O上一点,且D1E=λEO.
(1)若λ=1,求异面直线DE与CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
查看答案
如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的manfen5.com 满分网.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=PB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

manfen5.com 满分网 查看答案
将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,则圆锥的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.