满分5 > 高中数学试题 >

直线l与椭圆交于A(x1,y1),B(x2,y2)两点,已知=(ax1,by1)...

直线l与椭圆manfen5.com 满分网交于A(x1,y1),B(x2,y2)两点,已知manfen5.com 满分网=(ax1,by1),manfen5.com 满分网=(ax2,by2),若manfen5.com 满分网manfen5.com 满分网且椭圆的离心率manfen5.com 满分网,又椭圆经过点manfen5.com 满分网,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(Ⅰ)利用椭圆的离心率,椭圆经过点,建立方程组,求得几何量,从而可得椭圆的方程; (Ⅱ)设l的方程,代入椭圆方程,利用韦达定理,结合=0可得方程,从而可求直线l的斜率k的值; (Ⅲ)分类讨论:①当直线AB斜率不存在时,即x1=x2,y1=-y2,利用=0,A在椭圆上,可求△AOB的面积;②当直线AB斜率存在时,设AB的方程为y=kx+t,代入椭圆方程,利用韦达定理,结合=0可得△AOB的面积是定值. 【解析】 (Ⅰ)∵椭圆的离心率,椭圆经过点,∴…2分 ∴a=2,b=1 ∴椭圆的方程为…3分 (Ⅱ)依题意,设l的方程为 由,∴ 显然△>0,…5分 由已知=0得:== 解得…6分. (Ⅲ)①当直线AB斜率不存在时,即x1=x2,y1=-y2, ∵=0,∴, ∵A在椭圆上,∴,∴,|y1|= ∴S==1; ②当直线AB斜率存在时,设AB的方程为y=kx+t,代入椭圆方程,可得(k2+4)x2+2ktx+t2-4=0 △=4k2t2-4(k2+4)(t2-4)>0,x1+x2=,x1x2= ∵=0,∴4x1x2+y1y2=0,∴4x1x2+(kx1+t)(kx2+t)=0 ∴2t2-k2=4 ∴==1 综上,△AOB的面积是定值1.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,x=2是f(x)的一个极值点.
(1)求函数f(x)的单调区间;
(2)若当x∈[1,+∞)时,manfen5.com 满分网恒成立,求a的取值范围.
查看答案
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
查看答案
如图,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=manfen5.com 满分网AP=2,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
manfen5.com 满分网
(1)求证:平面PCD⊥平面PAD;
(2)求二面角G-EF-D的大小;
(3)求三棱椎D-PAB的体积.
查看答案
已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足manfen5.com 满分网=manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosmanfen5.com 满分网manfen5.com 满分网=3.
(1)求△ABC的面积;
(2)若c=1,求a、sinB的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.