满分5 > 高中数学试题 >

选修41:几何证明选讲 如图,⊙O1与⊙O2相交于A、B两点,AB是⊙O2的直径...

选修41:几何证明选讲
如图,⊙O1与⊙O2相交于A、B两点,AB是⊙O2的直径,过A点作⊙O1的切线交⊙O2于点E,并与BO1的延长线交于点P,PB分别与⊙O1、⊙O2交于C,D两点.
求证:
(1)PA•PD=PE•PC;
(2)AD=AE.

manfen5.com 满分网
(1)根据切割线定理,建立两个等式,即可证得结论; (2)连接AC、ED,设DE与AB相交于点F,证明AC是⊙O2的切线,可得∠CAD=∠AED,由(1)知,可得∠CAD=∠ADE,从而可得∠AED=∠ADE,即可证得结论. 证明:(1)∵PE、PB分别是⊙O2的割线 ∴PA•PE=PD•PB             (2分) 又∵PA、PB分别是⊙O1的切线和割线 ∴PA2=PC•PB        (4分) 由以上条件得PA•PD=PE•PC(5分) (2)连接AC、ED,设DE与AB相交于点F ∵BC是⊙O1的直径,∴∠CAB=90° ∴AC是⊙O2的切线.(6分) 由(1)知,∴AC∥ED,∴AB⊥DE,∠CAD=∠ADE(8分) 又∵AC是⊙O2的切线,∴∠CAD=∠AED 又∠CAD=∠ADE,∴∠AED=∠ADE ∴AD=AE(10分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x.(a∈R,e为自然对数的底数)
(I)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在manfen5.com 满分网上无零点,求a的最小值;
(Ⅲ)若对任意给定的x∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x)成立,求a的取值范围.
查看答案
设C1是以F为焦点的抛物线y2=2px(p>0),C2是以直线manfen5.com 满分网manfen5.com 满分网为渐近线,以manfen5.com 满分网为一个焦点的双曲线.
(1)求双曲线C2的标准方程;
(2)若C1与C2在第一象限内有两个公共点A和B,求p的取值范围,并求manfen5.com 满分网的最大值; 
(3)若△FAB的面积S满足manfen5.com 满分网,求p的值.

manfen5.com 满分网 查看答案
在△ABC中角A、B、C的对边分别为a、b、c设向量manfen5.com 满分网=(a,cosB),manfen5.com 满分网=(b,cosA)且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)若sinA+sinB=manfen5.com 满分网,求A;
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b试确定x的取值范围.
查看答案
如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为线段A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小.

manfen5.com 满分网 查看答案
在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答这道题对的概率是manfen5.com 满分网,甲、丙两人都回答错的概率是manfen5.com 满分网,乙、丙两人都回答对的概率是manfen5.com 满分网
(Ⅰ)求乙、丙两人各自回答这道题对的概率;
(Ⅱ)用ξ表示回答该题对的人数,求ξ的分布列和数学期望Eξ.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.