由f(x)=2x-cosx,又{an}是公差为的等差数列,可求得f(a1)+f(a2)+…+f(a5)=10a3,由题意可求得a3,从而进行求解.
【解析】
∵f(x)=2x-cosx,
∴f(a1)+f(a2)+…+f(a5)=2(a1+a2+…+a5)-(cosa1+cosa2+…+cosa5),
∵{an}是公差为的等差数列,
∴a1+a2+…+a5=5a3,由和差化积公式可得,
cosa1+cosa2+…+cosa5
=(cosa1+cosa5)+(cosa2+cosa4)+cosa3
=[cos(a3-×2)+cos(a3+×2)]+[cos(a3-)+cos(a3+)]+cosa3
=2coscos+2coscos+cosa3
=2cosa3•+2cosa3•cos(-)+cosa3
=cosa3(1++)
则cosa1+cosa2+…+cosa5的结果不含π,
又∵f(a1)+f(a2)+…+f(a5)=5π,
∴cosa3=0,故a3=,
∴=π2-(-2•)=π2-=,
故答案为: