满分5 > 高中数学试题 >

抛物线顶点在原点,它的准线过双曲线-=1(a>0,b>0)的一个焦点,并与双曲线...

抛物线顶点在原点,它的准线过双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(manfen5.com 满分网manfen5.com 满分网),求抛物线与双曲线方程.
首先根据抛物线的准线过双曲线的焦点,可得p=2c,再利用抛物线与双曲线同过交点(,),求出c、p的值,进而结合双曲线的性质a2+b2=c2,求解即可. 【解析】 由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4c•x, ∵抛物线过点(,),∴6=4c•. ∴c=1,故抛物线方程为y2=4x. 又双曲线-=1过点(,), ∴-=1.又a2+b2=c2=1,∴-=1. ∴a2=或a2=9(舍). ∴b2=, 故双曲线方程为:4x2-=1.
复制答案
考点分析:
相关试题推荐
过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则manfen5.com 满分网=    查看答案
设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点.若AB的中点为(2,2),则直线ι的方程为    查看答案
已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为    查看答案
设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若manfen5.com 满分网=0,则manfen5.com 满分网的值为( )
A.3
B.4
C.6
D.9
查看答案
设F为拋物线y2=ax(a>0)的焦点,点P在拋物线上,且其到y轴的距离与到点F的距离之比为1:2,则|PF|等于( )
A.manfen5.com 满分网
B.a
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.