满分5 > 高中数学试题 >

如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底...

manfen5.com 满分网如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B∥平面D1AC;
(2)求证:平面D1AC⊥平面B1BDD1
(1)设AC∩BD=E,连接D1E,根据平面ABCD∥平面A1B1C1D1的性质得B1D1∥BE,而B1D1=BE=,则四边形B1D1EB是平行四边形,从而B1B∥D1E,又因B1B⊄平面D1AC,D1E⊂平面D1AC,根据线面平行的判定定理可知B1B∥平面D1AC; (2)根据侧棱DD1⊥平面ABCD,AC⊂平面ABCD,得AC⊥DD1.而下底ABCD是正方形则AC⊥BD,根据DD1与DB是平面B1BDD1内的两条相交直线,则AC⊥平面B1BDD1,AC⊂平面D1AC,根据面面垂直的判定定理可知平面D1AC⊥平面B1BDD1. 证明:(1)设AC∩BD=E,连接D1E, ∵平面ABCD∥平面A1B1C1D1. ∴B1D1∥BE,∵B1D1=BE=, ∴四边形B1D1EB是平行四边形, 所以B1B∥D1E. 又因为B1B⊄平面D1AC,D1E⊂平面D1AC, 所以B1B∥平面D1AC (2)证明:侧棱DD1⊥平面ABCD,AC⊂平面ABCD, ∴AC⊥DD1. ∵下底ABCD是正方形,AC⊥BD. ∵DD1与DB是平面B1BDD1内的两条相交直线, ∴AC⊥平面B1BDD1 ∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.
复制答案
考点分析:
相关试题推荐
如下图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
(Ⅰ)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面
图形的面积.
(Ⅱ)图3中,E为棱PB上的点,F为底面对角线AC上的点,且manfen5.com 满分网,求证:EF∥平面PDA.
manfen5.com 满分网manfen5.com 满分网
查看答案
如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及点P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则需要    个这样的几何体,可以拼成一个棱长为6的正方体.
manfen5.com 满分网 查看答案
已知a、b是两条异面直线,a⊥b,点P∉a且P∉b.下列命题中:
①在上述已知条件下,平面α一定满足:P∈α,a∥α且b∥α;
②在上述已知条件下,存在平面α,使P∉α,a⊂α且b⊥α;
③在上述已知条件下,直线c一定满足:P∈c,a∥c且b∥c;
④在上述已知条件下,存在直线c,使P∉c,a⊥c且b⊥c.
正确的命题有    (把所有正确的序号都填上). 查看答案
manfen5.com 满分网如图,是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是    查看答案
已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.