将直线ρcosθ+ρsinθ=0化为一般方程,再利用线段AB最短可知直线AB与已知直线垂直,设出直线AB的方程,联立方程求出B的坐标,从而求解.
【解析】
∵x=ρcosθ,y=ρsinθ,代入直线ρcosθ+ρsinθ=0,
可得x+y=0…①,
∵定点A(1,),与动点B在直线ρcosθ+ρsinθ=0上运动,当线段AB最短时,此时直线AB垂直于直线x+y=0,
设直线AB为:y-=1×(x-1),即y=x-1+…②,
联立方程①②求得交点B(-,-),
∴B极坐标为ρ==,tanθ==-1,∴θ=-.
故选B.