满分5 > 高中数学试题 >

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(...

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求证:manfen5.com 满分网
(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?
(Ⅰ)直接利用定义把集合P=2,4,6,8,Q=2,4,8,16中的值代入即可求出l(P)和l(Q); (Ⅱ)先由ai+aj(1≤i<j≤n)最多有个值,可得;再利用定义推得所有ai+aj(1≤i<j≤n)的值两两不同,即可证明结论. (Ⅲ)l(A)存在最小值,设a1<a2<<an,所以a1+a2<a1+a3<…<a1+an<a2+an<…<an-1+an.由此即可证明l(A)的最小值2n-3. 【解析】 (Ⅰ)根据题中的定义可知:由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l(P)=5. 由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l(Q)=6.(5分) (Ⅱ)证明:因为ai+aj(1≤i<j≤n)最多有个值,所以. 又集合A=2,4,8,,2n,任取ai+aj,ak+al(1≤i<j≤n,1≤k<l≤n), 当j≠l时,不妨设j<l,则ai+aj<2aj=2j+1≤al<ak+al, 即ai+aj≠ak+al.当j=l,i≠k时,ai+aj≠ak+al. 因此,当且仅当i=k,j=l时,ai+aj=ak+al. 即所有ai+aj(1≤i<j≤n)的值两两不同, 所以.(9分) (Ⅲ)l(A)存在最小值,且最小值为2n-3. 不妨设a1<a2<a3<…<an,可得a1+a2<a1+a3<…<a1+an<a2+an<…<an-1+an, 所以ai+aj(1≤i<j≤n)中至少有2n-3个不同的数,即l(A)≥2n-3. 事实上,设a1,a2,a3,,an成等差数列, 考虑ai+aj(1≤i<j≤n),根据等差数列的性质, 当i+j≤n时,ai+aj=a1+ai+j-1; 当i+j>n时,ai+aj=ai+j-n+an; 因此每个和ai+aj(1≤i<j≤n)等于a1+ak(2≤k≤n)中的一个, 或者等于al+an(2≤l≤n-1)中的一个. 所以对这样的A,l(A)=2n-3,所以l(A)的最小值为2n-3.(13分)
复制答案
考点分析:
相关试题推荐
已知点manfen5.com 满分网是离心率为manfen5.com 满分网的椭圆C:manfen5.com 满分网上的一点.斜率为manfen5.com 满分网的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线AB、AD的斜率之和为定值.
查看答案
已知函数f(x)=x2+ax+blnx(x>0,实数a,b为常数).
(Ⅰ)若a=1,b=-1,求f(x)在x=1处的切线方程;
(Ⅱ)若a=-2-b,讨论函数f(x)的单调性.
查看答案
为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
队别北京上海天津八一
人数4635
(Ⅰ)从这18名队员中随机选出两名,求两人来自于同一支球队的概率;
(Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为ξ,求随机变量ξ的分布列,并求ξ的均值(数学期望).
查看答案
如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.
(Ⅰ)求证:PB∥平面EFH;
(Ⅱ)求证:PD⊥平面AHF;
(Ⅲ)求二面角H-EF-A的大小.

manfen5.com 满分网 查看答案
在△ABC中,a、b、c为角A、B、C所对的三边,已知b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若manfen5.com 满分网manfen5.com 满分网,求c的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.