满分5 > 高中数学试题 >

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线...

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
(1)由勾股定理可得 PQ2=OP2-OQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2,化简可得a,b间满足的等量关系. (2)由于 PQ==,利用二次函数的性质求出它的最小值. (3)设⊙P 的半径为R,可得|R-1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=-2a+3=,R取得最小值为-1,从而得到圆的标准方程. 【解析】 (1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得 PQ2=OP2-OQ2. 由已知PQ=PA,可得 PQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2. 花简可得 2a+b-3=0. (2)∵PQ====, 故当a=时,线段PQ取得最小值为. (3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R-1|≤PO≤R+1. 而OP===,故当a=时,PO取得最小值为, 此时,b=-2a+3=,R取得最小值为-1. 故半径最小时⊙P 的方程为 +=.
复制答案
考点分析:
相关试题推荐
已知在△ABC中,
(1)若三边长a,b,c依次成等差数列,sinA:sinB=3:5,求三个内角中最大角的度数;
(2)若manfen5.com 满分网,求cosB.
查看答案
等比数列{xn}各项均为正值,yn=2logaxn(a>0且a≠1,n∈N*),已知y4=17,y7=11
(1)求证:数列{yn}是等差数列;
(2)数列{yn}的前多少项的和为最大?最大值是多少?
(3)求数列{|yn|}的前n项和.
查看答案
如图:已知长方体ABCD-A1B1C1D1的底面ABCD是边长为4的正方形,高AA1=4manfen5.com 满分网,P为CC1的中点,AC、BD交于O
(I)求证:BD⊥面A1ACC1
(Ⅱ)求证:BD⊥OP;
(Ⅲ)求三棱锥P-A1DB的体积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)在如图给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间.

manfen5.com 满分网 查看答案
球面上有3个点,其中任意两点的球面距离都等于圆周长的manfen5.com 满分网,经过这3个点的小圆的周长为4π,那么球半径为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.