已知函数f(x)=a
x+x
2-xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)-t|-1有三个零点,求t的值;
(Ⅲ)若存在x
1,x
2∈[-1,1],使得|f(x
1)-f(x
2)|≥e-1,试求a的取值范围.
考点分析:
相关试题推荐
已知数列{a
n}和{b
n}满足:a
1=λ,a
n+1=
-3n+21),其中λ为实数,n为正整数.S
n为数列{b
n}的前n项和.
(1)对任意实数λ,证明:数列{a
n}不是等比数列;
(2)对于给定的实数λ,试求数列{b
n}的通项公式,并求S
n.
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<S
n<b?若存在,求λ的取值范围;若不存在,说明理由.
查看答案
已知椭圆
的左顶点为A,左、右焦点分别为F
1,F
2,且圆C:
过A,F
2两点.
(1)求椭圆标准的方程;
(2)设直线PF
2的倾斜角为α,直线PF
1的倾斜角为β,当β-α=
时,证明:点P在一定圆上;
(3)设椭圆的上顶点为Q,证明:PQ=PF
1+PF
2.
查看答案
如图所示,某学校的教学楼前有一块矩形空地ABCD,其长为32米,宽为18米,现要在此空地上种植一块矩形草坪,三边留有人行道,人行道宽度为a米与b米均不小于2米,且要求“转角处(图中矩形AEFG)”的面积为8平方米
(1)试用a表示草坪的面积S(a),并指出a的取值范围
(2)如何设计人行道的宽度a、b,才能使草坪的面积最大?并求出草坪的最大面积.
(3)直接写出(不需要给出演算步骤)草坪面积的最小值及此时a的值.
查看答案
如图已知在三棱柱ABC-A
1B
1C
1中,AA
1⊥面ABC,AC=BC,M,N,P,Q分别是AA
1,BB
1,AB,B
1C
1的中点,
(1)求证:面PCC
1⊥面MNQ;
(2)求证:PC
1∥面MNQ.
查看答案
已知函数
,
(1)求函数f(x)的最小正周期;
(2)在△ABC中,已知A为锐角,f(A)=1,
,求AC边的长.
查看答案