满分5 > 高中数学试题 >

已知a∈R,函数f(x)=x|x-a|, (Ⅰ)当a=2时,写出函数y=f(x)...

已知a∈R,函数f(x)=x|x-a|,
(Ⅰ)当a=2时,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值;
(Ⅲ)设a≠0,函数f(x)在(m,n)上既有最大值又有最小值,请分别求出m、n的取值范围(用a表示).
(I)将a=2代入函数的解析得出f(x)=x|x-2|,将其变为分段函数,利用二次函数的图象与性质研究其单调性即可 (Ⅱ)当a>2时,函数y=f(x)在区间[1,2]上解析式是确定的,去掉绝对号后根据二次函数的性质确定其单调性,再求最值. (Ⅲ)a≠0,函数f(x)在(m,n)上既有最大值又有最小值说明在函数最值不在区间端点处取得,在这个区间内必有两个极值,由函数的性质确定出极值,由于极值即为最值,故可借助函数的图象得m、n的取值范围. 【解析】 (Ⅰ)当a=2时,f(x)=x|x-2|= 由二次函数的性质知,单调递增区间为(-∞,1],[2,+∞)(开区间不扣分) (Ⅱ)因为a>2,x∈[1,2]时,所以f(x)=x(a-x)=-x2+ax= 当1<≤,即2<a≤3时,f(x)min=f(2)=2a-4 当,即a>3时,f(x)min=f(1)=a-1 ∴ (Ⅲ) ①当a>0时,图象如上图左所示 由得 ∴, ②当a<0时,图象如上图右所示 由得 ∴,
复制答案
考点分析:
相关试题推荐
设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.数列{bn}的前n项和为Tn,满足Tn=1-bn
(1)求数列{an}的通项公式;
(2)写出一个正整数m,使得manfen5.com 满分网是数列{bn}的项;
(3)设数列{cn}的通项公式为manfen5.com 满分网,问:是否存在正整数t和k(k≥3),使得c1,c2,ck成等差数列?若存在,请求出所有符合条件的有序整数对(t,k);若不存在,请说明理由.
查看答案
如图,已知椭圆manfen5.com 满分网的左、右顶点分别为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足|PF|2-|PB|2=3,求点P的轨迹;
(2)若x1=3,manfen5.com 满分网,求点T的坐标.

manfen5.com 满分网 查看答案
如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,AC=BC=PA=2.
(1)求三棱锥P-ABC的体积V;
(2)求异面直线AB与PC所成角的大小.

manfen5.com 满分网 查看答案
设复数z=(a2-4sin2θ)+(1+2cosθ)i,其中i为虚数单位,a为实数,θ∈(0,π).若z是方程x2-2x+5=0的一个根,且z在复平面内所对应的点在第一象限,求θ与a的值.
查看答案
在平面直角坐标系内,设M(x1,y1)、N(x2,y2)为不同的两点,直线l的方程为ax+by+c=0,δ1=ax1+by1+c,δ2=ax2+by2+c.有四个命题:
①若δ1δ2>0,则点M、N一定在直线l的同侧;
②若δ1δ2<0,则点M、N一定在直线l的两侧;
③若δ12=0,则点M、N一定在直线l的两侧;
④若manfen5.com 满分网,则点M到直线l的距离大于点N到直线l的距离.
上述命题中,全部真命题的序号是( )
A.①②③
B.①②④
C.②③④
D.①②③④
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.