满分5 > 高中数学试题 >

已知数列{an}满足,且a2=6. (1)设,求数列{bn}的通项公式; (2)...

已知数列{an}满足manfen5.com 满分网,且a2=6.
(1)设manfen5.com 满分网,求数列{bn}的通项公式;
(2)设manfen5.com 满分网,c为非零常数,若数列{un}是等差数列,记manfen5.com 满分网,Sn=c1+c2+…+cn,求Sn
(1)根据,可将化成,然后利用叠加法可求出数列{bn}的通项公式; (2)根据等差数列是关于n的一次函数,而c为非零常数,可求出c的值,从而求出{cn}的通项,最后利用错位相消法可求出Sn. 【解析】 (1)∵, ∴(n-1)an+1=(n+1)an-(n+1) 当n≥2时, 而 ∴bn+1-bn=-(n≥2) ∵a2=6∴b2===3 ∵b3-b2=-1 b4-b3=- … bn-bn-1=(n≥3) 将这些式子相加得bn-b2= ∴bn=(n≥3) b2=3也满足上式,b1=3不满上式 ∴ (2),令n=1得a1=1 ∵ ∴an=2n2-n(n≥2) 而a1=1也满足上式 ∴an=2n2-n ∵,数列{un}是等差数列 ∴是关于n的一次函数,而c为非零常数 ∴c=-,un=2n ∴=, Sn=c1+c2+…+cn=2×+4×+…+2n× Sn=2×+4×+…+2n× 两式作差得Sn=2×+2×+…+2×-2× ∴
复制答案
考点分析:
相关试题推荐
第30届夏季奥运会将于2012年7月27日在英国伦敦召开,某百货公司预计从2012年1月起前x个月市场对某种奥运商品的需求总量manfen5.com 满分网,(x∈N*,且x≤12).该商品的进价q(x)与月份x的近似关系为q(x)=150+2x(x∈N*,x≤12).
(1)求2012年第x个月的需求量f(x);
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则该百货公司2012年仅销售该商品可获月利润预计最大是多少?
查看答案
如图,在正三棱柱ABC-A1B1C1中,点D在棱BC上,AD⊥C1D.
(1)求证:AD⊥平面BCC1B1
(2)设点E是B1C1的中点,求证:A1E∥平面ADC1
(3)设点M在棱BB1上,试确定点M的位置,使得平面AMC1⊥平面AA1C1C.

manfen5.com 满分网 查看答案
在锐角三角形ABC中,manfen5.com 满分网
(1)求tanB的值;
(2)若manfen5.com 满分网,求实数m的值.
查看答案
已知各项均为正数的两个数列由表下给出:
定义数列{cn}:c1=0,manfen5.com 满分网,并规定数列n12345
an15312
bn162xy
{ an},{ bn}的“并和”为 Sab=a1+a2+…+a5+c5.若 Sab=15,
则y的最小值为    查看答案
x,y是两个不相等的正数,且满足x3-y3=x2-y2,则[9xy]的最大值为    .(其中[x]表示不超过x的最大整数). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.