设f(x)=x
3,等差数列{a
n}中a
3=7,a
1+a
2+a
3=12,记S
n=
,令b
n=a
nS
n,数列
的前n项和为T
n.
(Ⅰ)求{a
n}的通项公式和S
n;
(Ⅱ)求证:
;
(Ⅲ)是否存在正整数m,n,且1<m<n,使得T
1,T
m,T
n成等比数列?若存在,求出m,n的值,若不存在,说明理由.
考点分析:
相关试题推荐
已知二次函数f(x)=ax
2+|a-1|x+a.
(1)函数f(x)在(-∞,-1)上单调递增,求实数a的取值范围;
(2)关于x不等式
≥2在x∈[1,2]上恒成立,求实数a的取值范围;
(3)函数g(x)=f(x)+
在(2,3)上是增函数,求实数a的取值范围.
查看答案
某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
查看答案
如图,△ABC中,∠ACB=90°,∠ABC=30°,BC=
,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体.
(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.
查看答案
已知
,满足
.
(Ⅰ)将y表示为x的函数f(x),并求f(x)的最小正周期:
(Ⅱ)已知a,b,c分别为△ABC的三个内角A,B,C的对应边长,若
,且a=2,求b+c的取值范围.
查看答案
已知函数
若f(2-a
2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞)
B.(-1,2)
C.(-2,1)
D.(-∞,-2)∪(1,+∞)
查看答案