满分5 > 高中数学试题 >

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,,...

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,manfen5.com 满分网,点M在线段EC上.
(I)当点M为EC中点时,求证:BM∥平面ADEF;
(II)当平面BDM与平面ABF所成锐二面角的余弦值为manfen5.com 满分网时,求三棱锥M-BDE的体积.

manfen5.com 满分网
(I)建立空间直角坐标系,用坐标表示点与向量,验证,即,从而可证BM∥平面ADEF; (II)利用平面BDM与平面ABF所成锐二面角的余弦值为,确定点M为EC中点,从而可得S△DEM=2,AD为三棱锥B-DEM的高,即可求得三棱锥M-BDE的体积. (I)证明:以直线DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),B(2,2,0)C(0,4,0),E(0,0,2),所以M(0,2,1). ∴--------(2分) 又是平面ADEF的一个法向量. ∵,∴ ∴BM∥平面ADEF------(4分) (II)【解析】 设M(x,y,z),则, 又,设,则x=0,y=4λ,z=2-2λ,即M(0,4λ,2-2λ).(6分) 设是平面BDM的一个法向量,则 取x1=1得 即   又由题设,是平面ABF的一个法向量,------(8分) ∴--(10分) 即点M为EC中点,此时,S△DEM=2,AD为三棱锥B-DEM的高, ∴VM-BDE=----------(12分)
复制答案
考点分析:
相关试题推荐
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:
12345678910
11.612.213.213.914.011.513.114.511.714.3
12.313.314.311.712.012.813.213.814.112.5
(I)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).
(Ⅱ)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.
(Ⅲ)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.
查看答案
已知函数f(x)=Msin(ωx+φ)(M>0,|φ|<manfen5.com 满分网)的部分图象如图所示.
(I)求函数f(x)的解析式;
(II)在△ABC中,角A、B、C的对边分别是a、b、c若(2a-c)cosB=bcosC,求f(manfen5.com 满分网)的取值范围.

manfen5.com 满分网 查看答案
由9个正数组成的数阵 manfen5.com 满分网每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列.给出下列结论:
①第二列中的a12,a22,a32必成等比数列;
②第一列中的a11,a21,a31不一定成等比数列;
③a12+a32≥a21+a23
④若9个数之和大于81,则a22>9.
其中正确的序号有    .(填写所有正确结论的序号). 查看答案
已知函数manfen5.com 满分网若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是    查看答案
已知z=2x+y,x,y满足manfen5.com 满分网且z的最大值是最小值的4倍,则a的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.