满分5 > 高中数学试题 >

已知函数f(x)=lnax-(a≠0) (Ⅰ)求此函数的单调区间及最值 (Ⅱ)求...

已知函数f(x)=lnax-manfen5.com 满分网(a≠0)
(Ⅰ)求此函数的单调区间及最值
(Ⅱ)求证:对于任意正整数n均有1+manfen5.com 满分网…+manfen5.com 满分网,其中e为自然对数的底数;
(Ⅲ)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,说明理由.
(Ⅰ)求导数,对a进行讨论,确定函数f(x)的定义域,可得函数的单调区间及最值; (Ⅱ)取a=2,证明(x>0),取x=1,2,3…,n,即可证得结论; (Ⅲ)假设存在这样的切线,确定切线方程,将切点坐标代入,再构建函数,利用函数在其定义域上的单调性,即可的符合条件的切线. (Ⅰ)【解析】 由题意.      …(1分) 当a>0时,函数f(x)的定义域为(0,+∞),此时函数在(0,a)上是减函数,在(a,+∞)上是增函数, 故,无最大值. …(3分) 当a<0时,函数f(x)的定义域为(-∞,0),此时函数在(-∞,a)上是减函数,在(a,0)上是增函数, 故,无最大值.…(5分) (Ⅱ)证明:取a=2,由(Ⅰ)可知:, 故,∴,(x>0) 取x=1,2,3…,n,则.…(10分) (Ⅲ)【解析】 假设存在这样的切线,设其中一个切点T(), ∴切线方程:y+1=,将点T坐标代入得:ln, 即ln,…① 设g(x)=lnx+,则. ∵x>0,∴g(x)在区间(0,1),(2.+∞)上是增函数,在区间(1,2)上是减函数, 故g(x)极大值=g(1)=1>0,g(x)极小值=g(2)=ln2+. 又,(也可以求等等) 注意到g(x)在其定义域上的单调性,知g(x)=0仅在内有且仅有一根 方程①有且仅有一解,故符合条件的切线有且仅有一条.…(15分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网在(x,0)处的切线斜率为零.
(Ⅰ)求x和b的值;
(Ⅱ)求证:在定义域内f(x)≥0恒成立;
(Ⅲ) 若函数manfen5.com 满分网有最小值m,且m>2e,求实数a的取值范围.
查看答案
已知椭圆C:manfen5.com 满分网,Fmanfen5.com 满分网为其右焦点,过F垂直于x轴的直线与椭圆相交所得的弦长为2.
(1)求椭圆C的方程;
(2)直线l:y=kx+m(km≠0)与椭圆C交于A、B两点,若线段AB中点在直线x+2y=0上,求△FAB的面积的最大值.
查看答案
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,manfen5.com 满分网,点M在线段EC上.
(I)当点M为EC中点时,求证:BM∥平面ADEF;
(II)当平面BDM与平面ABF所成锐二面角的余弦值为manfen5.com 满分网时,求三棱锥M-BDE的体积.

manfen5.com 满分网 查看答案
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:
12345678910
11.612.213.213.914.011.513.114.511.714.3
12.313.314.311.712.012.813.213.814.112.5
(I)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).
(Ⅱ)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.
(Ⅲ)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.
查看答案
已知函数f(x)=Msin(ωx+φ)(M>0,|φ|<manfen5.com 满分网)的部分图象如图所示.
(I)求函数f(x)的解析式;
(II)在△ABC中,角A、B、C的对边分别是a、b、c若(2a-c)cosB=bcosC,求f(manfen5.com 满分网)的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.