已知函数f(x)=x
2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x
2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:
.
考点分析:
相关试题推荐
设椭圆C:
的左、右焦点分别为F
1、F
2,上顶点为A,在x轴负半轴上有一点B,满足
,且AB⊥AF
2.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A、B、F
2三点的圆恰好与直线
相切,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点F
2作斜率为k的直线l与椭圆C交于M、N两点,若点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,求的取值范围.
查看答案
如图,四棱锥P-ABCD的底ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F分别是AB,BC的中点N在轴上.
(I)求证:PF⊥FD;
(II)在PA上找一点G,使得EG∥平面PFD;
(III)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
查看答案
某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值).
查看答案
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量
,
,且
.
(Ⅰ)求角C的大小;
(Ⅱ)若向量
,试求
的取值范围.
查看答案
已知数列{a
n}的前n项和为S
n,a
1=1,且3a
n+1+2S
n=3(n为正整数)
(Ⅰ)求出数列{a
n}的通项公式;
(Ⅱ)若对任意正整数n,k≤S
n恒成立,求实数k的最大值.
查看答案