在三角形F1F2P中,点N恰好平分线段PF2,点O恰好平分线段F1F2,根据三角形的中位线定理得出ON∥PF1,从而得到∠PF1F2正切值,可设PF2=bt.PF1=at,再根据双曲线的定义可知|PF2|-|PF1|=2a,进而根据勾股定理建立等式求得a和b的关系,则离心率可得.
【解析】
在三角形F1F2P中,点N恰好平分线段PF2,点O恰好平分线段F1F2,
∴ON∥PF1,又ON的斜率为,
∴tan∠PF1F2=,
在三角形F1F2P中,设PF2=bt.PF1=at,
根据双曲线的定义可知|PF2|-|PF1|=2a,∴bt-at=2a,①
在直角三角形F1F2P中,|PF2|2+|PF1|2=4c2,∴b2t2+a2t2=4c2,②
由①②消去t,得,
又c2=a2+b2,
∴a2=(b-a)2,即b=2a,
∴双曲线的离心率是=,
故选A.