今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:
(I)若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;
(II)若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.
考点分析:
相关试题推荐
选做题:在极坐标系中,圆C:p=10cosθ和直线l:3ρc0sθ-4ρsinθ-30=0相交于A、B两点,求线段AB的长.
查看答案
已知M=
,N=
,求曲线2x
2-2xy+1=0在矩阵MN对应的变换作用下得到的曲线方程.
查看答案
已知函数f(x)的定义域为(0,+∞),若y=
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω
1,所有“二阶比增函数”组成的集合记为Ω
2.
(Ⅰ)已知函数f(x)=x
3-2hx
2-hx,若f(x)∈Ω
1,且f(x)∉Ω
2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω
1且f(x)的部分函数值由下表给出,
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω
2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得∀f(x)∈Φ,∀x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.
查看答案
已知椭圆C:
的离心率
,一条准线方程为
.
(1)求椭圆C的方程;
(2)设G,H为椭圆上的两个动点,O为坐标原点,且OG⊥OH.
①当直线OG的倾斜角为60°时,求△GOH的面积;
②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案
已知数列{a
n}的前n项和为S
n,且满足:a
1=a(a≠0),a
n+1=rS
n (n∈N
*,r∈R,r≠-1).
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)若存在k∈N
*,使得S
k+1,S
k,S
k+2成等差数列,试判断:对于任意的m∈N
*,且m≥2,a
m+1,a
m,a
m+2是否成等差数列,并证明你的结论.
查看答案