满分5 > 高中数学试题 >

(附加题-选做题)(坐标系与参数方程) 已知曲线C的参数方程为,α∈[0,2π)...

(附加题-选做题)(坐标系与参数方程)
已知曲线C的参数方程为manfen5.com 满分网,α∈[0,2π),曲线D的极坐标方程为manfen5.com 满分网
(1)将曲线C的参数方程化为普通方程;
(2)曲线C与曲线D有无公共点?试说明理由.
(1)先由,α∈[0,2π),利用三角函数的平方关系消去参数α即得x2+y=1,x∈[-1,1]. (2)由.利用三角函数的和角公式展开,得曲线D的普通方程为x+y+2=0,欲曲线C与曲线D有无公共点,主要看它们组成的方程有没有实数解即可. 【解析】 (1)由,α∈[0,2π),得x2+y=1,x∈[-1,1]. (2)由. 得曲线D的普通方程为x+y+2=0 得x2-x-3=0 解x=,故曲线C与曲线D无公共点.
复制答案
考点分析:
相关试题推荐
学校餐厅每天供应1000名学生用餐,每星期一有A、B两样菜可供选择,调查资料表明,凡是在本周星期一选A菜的,下周星期一会有20%改选B,而选B菜的,下周星期一则有30%改选A,若用AAn、Bn分别表示在第n个星期一选A、B菜的人数.
(1)若manfen5.com 满分网,请你写出二阶矩阵M;
(2)求二阶矩阵M的逆矩阵.
查看答案
设数列{an},对任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常数).
(1)当k=0,b=3,p=-4时,求a1+a2+a3+…+an
(2)当k=1,b=0,p=0时,若a3=3,a9=15,求数列{an}的通项公式;
(3)若数列{an}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当k=1,b=0,p=0时,设Sn是数列{an}的前n项和,a2-a1=2,试问:是否存在这样的“封闭数列”{an},使得对任意n∈N*,都有Sn≠0,且manfen5.com 满分网.若存在,求数列{an}的首项a1的所有取值;若不存在,说明理由.
查看答案
已知函数manfen5.com 满分网,且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<-1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式manfen5.com 满分网恒成立,求实数m的取值范围.
查看答案
如图,椭圆C:manfen5.com 满分网过点M(1,manfen5.com 满分网),N(manfen5.com 满分网),梯形ABCD(AB∥CD∥y轴,且AB>CD)内接于椭圆,E是对角线AC与BD的交点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设AB=m,CD=n,OE=d,试求manfen5.com 满分网的最大值.

manfen5.com 满分网 查看答案
某生产旅游纪念品的工厂,拟在2010年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x万件与年促销费用t万元之间满足3-x与t+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2010年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)
(1)求出x与t所满足的关系式;
(2)请把该工厂2010年的年利润y万元表示成促销费t万元的函数;
(3)试问:当2010年的促销费投入多少万元时,该工厂的年利润最大?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.