满分5 > 高中数学试题 >

已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底). (...

已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).
(Ⅰ)若函数f(x)在x=0时取得极小值,试确定a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,设由f(x)的极大值构成的函数为g(x),试判断曲线g(x)只可能与直线2x-3y+m=0、3x-2y+n=0(m,n为确定的常数)中的哪一条相切,并说明理由.
(I)求出导函数的两个根,就两根的大小分类讨论,在各类中判断根左右两边的导函数正负,据极值的定义求出极小值. (II)借助(I)求出极大值g(x),求出g(x)的导函数g′(x),据导数的几何意义,g′(x)的范围即为切线斜率的范围,再通过g′(x)的导数研究g′(x)的单调性,判断出g′(x)范围即切线斜率的范围. 【解析】 (Ⅰ)f'(x)=(2x+a)e-x-e-x(x2+ax+a)=e-x[-x2+(2-a)x]=e-x•(-x)•[x-(2-a)],令f'(x)=0, 得x=0或x=2-a, 当a=2时,f'(x)=-x2e-x≤0恒成立,此时f(x)单调递减; 当a<2时,f'(x)<0时,2-a>0, 若x<0,则f'(x)<0,若0<x<2-a,则f'(x)>0,x=0是函数f(x)的极小值点; 当a>2时,2-a<0,若x>0,则,若2-a<x<0,则f'(x)>0, 此时x=0是函数f(x)的极大值点, 综上所述,使函数f(x)在x=0时取得极小值的a的取值范围是a<2 (Ⅱ)由(Ⅰ)知a<2,且当x>2-a时,f'(x)<0, 因此x=2-a是f(x)的极大值点,fmax(x)=f(2-a)=(4-a)ea-2, 于是g(x)=(4-x)ex-2(x<2) g'(x)=-ex-2+ex-2(4-x)=(3-x)ex-2,令h(x)=(3-x)ex-2(x<2), 则h'(x)=(2-x)ex-2>0恒成立, 即h(x)在(-∞,2)是增函数, 所以当x<2时,h(x)<h(2)=(3-2)e2-2=1,即恒有g'(x)<1, 又直线2x-3y+m=0的斜率为,直线3x-2y+n=0的斜率为, 所以由导数的几何意义知曲线g(x)只可能与直线2x-3y+m=0相切.
复制答案
考点分析:
相关试题推荐
已知点F椭圆E:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且△ABM是边长为2的正三角形;又椭圆E上的P、Q两点关于直线l:y=x+n对称.
(I)求椭圆E的方程;
(II)当直线l过点(0,manfen5.com 满分网)时,求直线PQ的方程;
(III)若点C是直线l上一点,且∠PCQ=manfen5.com 满分网,求△PCQ面积的最大值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求证:BD⊥平面ADG.
(2)求平面AEFG与平面ABCD所成锐二面角的余弦值.
查看答案
△ABC的三个内角A、B、C依次成等差数列;
(Ⅰ)若sin2B=sinAsinc,试判断△ABC的形状;
(Ⅱ)若△ABC为钝角三角形,且a>c,试求代数式sin2manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的取值范围.
查看答案
今天你低碳了吗?近来国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量,如家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等,某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这二族人数占各自小区总人数的比例P数据如下:
A小区低碳族非低碳族B小区低碳族非低碳族
比例Pmanfen5.com 满分网manfen5.com 满分网比例Pmanfen5.com 满分网manfen5.com 满分网
(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰好有两人是低碳族的概率;
(2)A小区经过大力宣传,每周非低碳中有20%的人加入到低碳族的行列,如果两周后随机地从A小区中任选25个人,记ξ表示25个人中的低碳族人数,求Eξ和Dξ.
查看答案
已知三棱锥A-BOC,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.