如图,A、B、C、D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CD∥AB;
(Ⅱ)延长CD到F,延长DC到G,使得EF=EG,证明:A、B、G、F四点共圆.
考点分析:
相关试题推荐
已知函数f(x)=x
3-3x.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
查看答案
已知椭圆C:
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为
,求斜率k的值;
②已知点
,求证:
为定值.
查看答案
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
(1)求四面体ABOC的体积.
(2)设P为AC的中点,证明:在AB上存在一点Q,使PQ⊥OA,并计算
的值.
查看答案
为了解某班学生喜爱文学是否与性别有关,对本班50人进行了问卷调 查,得到了如下的列联表:
| 喜爱文学 | 不喜爱文学 | 合计 |
男生 | 10 | 15 | 25 |
女生 | 20 | 5 | 25 |
合计 | 30 | 20 | 50 |
(I)是否有99.5%的把握认为“喜爱文学与性别“有关?说明你的理由;
(II)已知喜爱文学的10位男生中,A
1,A
1,A
3还喜欢美术;B
1,B
2,B
3还喜欢音乐,C
1,C
2还 喜欢体育.现在从喜欢美术、音乐、体育的8位男生中各选出1名进行其他方面的调查,求男生B
1和C
1不全被选中的概率.给出以下临界值表供参考:
P (K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K
2=
,其中n=a+b+c+d)
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,ccosA成等差数列.
(Ⅰ)求角B的大小;
(Ⅱ)若a+c=4,求AC边上中线长的最小值.
查看答案