由题意可设直线L的方程为y-5=k(x-3),P(0,5-3k),设A(x1,y1),B(x2,y2),联立,然后由方程的根与系数关系可得,x1+x2,x1x2,由A为PB的中点可得x2=2x1,联立可求x1,x2,进而可求k,即可求解直线方程
【解析】
由题意可得,C(3,5),直线L的斜率存在
可设直线L的方程为y-5=k(x-3)
令x=0可得y=5-3k即P(0,5-3k),设A(x1,y1),B(x2,y2)
联立消去y可得(1+k2)x2-6(1+k2)x+9k2+4=0
由方程的根与系数关系可得,x1+x2=6,x1x2=①
∵A为PB的中点
∴即x2=2x1②
把②代入①可得x2=4,x1=2,x1x2==8
∴k=±2
∴直线l的方程为y-5=±2(x-3)即y=2x-1或y=-2x+11
故答案为:y=2x-1或y=-2x+11