满分5 > 高中数学试题 >

选修4-5:不等式选讲 已知关于x的不等式|2x+1|-|x-1|≤log2a(...

选修4-5:不等式选讲
已知关于x的不等式|2x+1|-|x-1|≤log2a(其中a>0).
(1)当a=4时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围.
(Ⅰ)当a=4时,不等式即|2x+1|-|x-1|≤2,分类讨论,去掉绝对值,分别求出解集,再取并集,即得所求. (Ⅱ)化简f(x)=|2x+1|-|x-1|的解析式,求出f(x)的最小值为,则由 ,解得实数a的取值范围. 【解析】 (Ⅰ)当a=4时,不等式即|2x+1|-|x-1|≤2,当时,不等式为-x-2≤2,解得.(1分) 当时,不等式为 3x≤2,解得.(2分) 当x>1时,不等式为x+2≤2,此时x不存在.(3分) 综上,不等式的解集为.(5分) (Ⅱ)设f(x)=|2x+1|-|x-1|=, 故,即f(x)的最小值为.(8分) 所以,当f(x)≤log2a有解,则有 ,解得,即a的取值范围是.(10分)
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程
在极坐标系中,曲线L:ρsin2θ=2cosθ,过点A(5,α)(α为锐角且manfen5.com 满分网)作平行于manfen5.com 满分网的直线l,且l与曲线L分别交于B,C两点.
(I)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线l的普通方程;
(II)求|BC|的长.
查看答案
选修41:几何证明选讲
如图,⊙O1与⊙O2相交于A、B两点,AB是⊙O2的直径,过A点作⊙O1的切线交⊙O2于点E,并与BO1的延长线交于点P,PB分别与⊙O1、⊙O2交于C,D两点.
求证:
(1)PA•PD=PE•PC;
(2)AD=AE.

manfen5.com 满分网 查看答案
已知函数f(x)=ln(2ax+1)+manfen5.com 满分网-x2-2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=-manfen5.com 满分网时,方程f(1-x)=manfen5.com 满分网有实根,求实数b的最大值.
查看答案
已知中心在原点,焦点在坐标轴上的椭圆Ω,它的离心率为manfen5.com 满分网,一个焦点和抛物线y2=-4x的焦点重合,过直线l:x=4上一点M引椭圆Ω的两条切线,切点分别是A,B.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)若在椭圆manfen5.com 满分网上的点(x,y)处的椭圆的切线方程是manfen5.com 满分网.求证:直线AB恒过定点C;并出求定点C的坐标.
(Ⅲ)是否存在实数λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(点C为直线AB恒过的定点)若存在,求出λ的值;若不存在,请说明理由.
查看答案
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)求直线AB与平面CBF所成角的大小;
(Ⅲ)当AD的长为何值时,平面DFC与平面FCB所成的锐二面角的大小为60°?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.