(1)根据绝对值的代数意义,去掉函数f(x)=|2x-2|+|x+3|中的绝对值符号,求解不等式f(x)>6,
(2)把关于x的不等式f(x)≤|2a-1|的解集不是空集,转化为关于x的不等式f(x)≤|2a-1|的解集非空,求函数f(x)的最小值即可求得a的取值范围.
【解析】
(1)【解析】
f(x)=
①由 ,解得x<-3;
②,解得-3≤x<-1;
③,解得x>;
综上可知不等式的解集为{x|x>或x<-1}.
(2)因为f(x)=|2x-2|+|x+3|≥4,
所以若f(x)≤|2a-1|的解集不是空集,则|2a-1|≥f(x)min=4,
解得:a≥或a≤-..
即a的取值范围是:a≥或a≤-.