满分5 > 高中数学试题 >

已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1) (1)求...

已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-4,求a的值.
(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来; (2)利用对数的运算性质对解析式进行化简,再由f(x)=0,即-x2-2x+3=1,求此方程的根并验证是否在函数的定义域内; (3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值loga4,得loga4=-4利用对数的定义求出a的值. 【解析】 (1)要使函数有意义:则有,解之得:-3<x<1, 则函数的定义域为:(-3,1) (2)函数可化为f(x)=loga(1-x)(x+3)=loga(-x2-2x+3) 由f(x)=0,得-x2-2x+3=1, 即x2+2x-2=0, ∵,∴函数f(x)的零点是 (3)函数可化为: f(x)=loga(1-x)(x+3)=loga(-x2-2x+3)=loga[-(x+1)2+4] ∵-3<x<1,∴0<-(x+1)2+4≤4, ∵0<a<1,∴loga[-(x+1)2+4]≥loga4, 即f(x)min=loga4,由loga4=-4,得a-4=4, ∴
复制答案
考点分析:
相关试题推荐
选修4-5:不等式选讲
已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案
命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围.
查看答案
f(x)是定义在[-2,2]上的偶函数,且f(x)在[0,2]上单调递减,若f(1-m)<f(m)成立,求实数m的取值范围    查看答案
若函数manfen5.com 满分网是R上的单调递减函数,则实数a的取值范围是    查看答案
设f(x)=manfen5.com 满分网,若当x∈(-∞,1]时f(x)有意义,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.