满分5 > 高中数学试题 >

设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R上的奇函数. (1)...

设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R上的奇函数.
(1)求k的值.
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0试求不等式f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若manfen5.com 满分网上的最小值为-2,求m.
(1)由奇函数性质得f(0)=0,解出即可; (2)由f(1)>0易知a>1,从而可判断f(x)的单调性,由函数单调性、奇偶性可把不等式转化为具体不等式,解出即可; (3)由f(1)=可求得a值,g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2,令t=f(x)=2x-2-x,g(x)可化为关于t的二次函数,分情况讨论其最小值,令最小值为-2,解出即可; 【解析】 (1)∵f(x)是定义域为R上的奇函数, ∴f(0)=0,∴k-1=0,∴k=1,经检验k=1符合题意; (2)∵f(1)>0,∴,又a>0且a≠1,∴a>1, 易知在R上单调递增, 原不等式化为:f(x2+2x)>f(4-x),∴x2+2x>4-x,即x2+3x-4>0, ∴x>1或x<-4, ∴不等式的解集为{x|x>1或x<-4}; (3)∵,∴,即2a2-3a-2=0, 解得(舍去), ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2. 令t=f(x)=2x-2-x,∵x≥1,∴, ∴g(t)=t2-2mt+2=(t-m)2+2-m2, 当时,当t=m时,,∴m=2; 当时,当时,, 解得,舍去, 综上可知m=2.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.
查看答案
已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5.
若存在,求出m的值;若不存在,请说明理由.
查看答案
已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-4,求a的值.
查看答案
选修4-5:不等式选讲
已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案
命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.