满分5 > 高中数学试题 >

(不等式选讲)已知函数f(x)=log2(|x+1|+|x-2|-m). (1)...

(不等式选讲)已知函数f(x)=log2(|x+1|+|x-2|-m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.
(1)由题设知:|x+1|+|x-2|>7,解此绝对值不等式求得函数f(x)的定义域. (2)由题意可得,不等式即|x+1|+|x-2|≥m+4,由于x∈R时,恒有|x+1|+|x-2|≥3,故m+4≤3,由此求得m的取值范围. 【解析】 (1)由题设知:|x+1|+|x-2|>7, 不等式的解集是以下不等式组解集的并集:,或,或 解得函数f(x)的定义域为(-∞,-3)∪(4,+∞); (2)不等式f(x)≥2即|x+1|+|x-2|≥m+4, ∵x∈R时,恒有|x+1|+|x-2|≥|(x+1)-(x-2)|=3, 不等式|x+1|+|x-2|≥m+4解集是R, ∴m+4≤3,m的取值范围是(-∞,-1].
复制答案
考点分析:
相关试题推荐
已知:直线l的参数方程为manfen5.com 满分网(t为参数),曲线C的极坐标方程为:ρ2cos2θ=1.
(1)求曲线C的普通方程;
(2)求直线l被曲线C截得的弦长.
查看答案
已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程|f(x)|=manfen5.com 满分网是否有实数解.
查看答案
已知椭圆manfen5.com 满分网(a>b>0)的一个顶点为B(0,4),离心率e=manfen5.com 满分网,直线l交椭圆于M、N两点.
(1)若直线l的方程为y=x-4,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.
查看答案
如图,三棱柱ABC-A1B1C1中,AA1⊥面ABC,BC⊥AC,AC=BC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1∥面BDC1
(Ⅱ)求点A1到面BDC1的距离.

manfen5.com 满分网 查看答案
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为(x-2,x-y).
(1)求|OP|的最大值;
(2)求|OP|取得最大值时的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.