(Ⅰ)△ABC中,由利用正弦定理求得 a2=b2+c2-bc,再由余弦定理求得cosA==,从而求得 A的值.
(Ⅱ)利用二倍角公式,两角和差正弦公式化简函数f(x)的解析式为 2sin(2x+),由 2kπ-≤2x+≤2kπ+,k∈z,求得x的范围,即可得到函数f(x)的单调增区间.
【解析】
(Ⅰ)△ABC中,由利用正弦定理可得 ,
化简可得 a2=b2+c2-bc.
再由余弦定理可得 cosA==,∴A=.
(Ⅱ)函数=sin(2x+A)+(cos2x+A)
=2sin(2x+A+)=2sin(2x+),
由 2kπ-≤2x+≤2kπ+,k∈z,求得 kπ-≤x≤kπ-,k∈z,
故函数f(x)的单调增区间为[kπ-,kπ-],k∈z.