满分5 > 高中数学试题 >

已知函数f(x)=ax2+lnx(a∈R). (1)当时,求f(x)在区间[1,...

已知函数f(x)=ax2+lnx(a∈R).
(1)当manfen5.com 满分网时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),
f2(x)的“活动函数”.
已知函数manfen5.com 满分网
若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,
求a的取值范围.
(1)由题意得 ,>0,∴f(x)在区间[1,e]上为增函数,即可求出函数的最值. (2)由题意得:令 <0,对x∈(1,+∞)恒成立,且h(x)=f1(x)-f(x)=<0对x∈(1,+∞)恒成立,分类讨论当 或 时两种情况求函数的最大值,可得到a的范围.又因为h′(x)=-x+2a-=<0,h(x)在(1,+∞)上为减函数,可得到a的另一个范围,综合可得a的范围. 【解析】 (1)当 时,,; 对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数, ∴,. (2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x) 令 <0,对x∈(1,+∞)恒成立, 且h(x)=f1(x)-f(x)=<0对x∈(1,+∞)恒成立, ∵ 1)若 ,令p′(x)=0,得极值点x1=1,, 当x2>x1=1,即 时,在(x2,+∞)上有p′(x)>0, 此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意; 当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意; 2)若 ,则有2a-1≤0,此时在区间(1,+∞)上恒有p′(x)<0, 从而p(x)在区间(1,+∞)上是减函数; 要使p(x)<0在此区间上恒成立,只须满足 , 所以 ≤a≤. 又因为h′(x)=-x+2a-=<0,h(x)在(1,+∞)上为减函数, h(x)<h(1)=+2a≤0,所以a≤ 综合可知a的范围是[,].
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,已知点manfen5.com 满分网,向量manfen5.com 满分网,点B为直线manfen5.com 满分网上的动点,点C满足manfen5.com 满分网,点M满足manfen5.com 满分网
(1)试求动点M的轨迹E的方程;
(2)设点P是轨迹E上的动点,点R、N在y轴上,圆(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.
查看答案
如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且manfen5.com 满分网,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

manfen5.com 满分网 查看答案
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.
月收入(单位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数月收入低于55百元的人数合计
赞成a=c=
不赞成b=d=
合计
(Ⅱ)若对在[15,25),[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列及数学期望.
参考公式:manfen5.com 满分网,其中n=a+b+c+d.
参考值表:
P(K^2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案
在△ABC中,a,b,c分别是三内角A,B,C所对应的三边,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若manfen5.com 满分网,试判断△ABC的形状.
查看答案
设a1,a2,…,an是各项不为零的n(n≥4)项等差数列,且公差d≠0.若将此数列删去某一项后,得到的数列(按原来顺序)是等比数列,则所有数对manfen5.com 满分网所组成的集合为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.