满分5 > 高中数学试题 >

已知一非零向量列{an}满足:a1=(1,1),an=(xn,yn)= (1)证...

已知一非零向量列{an}满足:a1=(1,1),an=(xn,yn)=manfen5.com 满分网
(1)证明:{|an|}是等比数列;
(2)设θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn
(3)设cn=|an|log2|an|,问数列{cn}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
(1)先利用向量模的计算公式得出的表达式,发现得出=利用等比数列定义判定是等比数列. (2)根据向量夹角公式可以求出θn=,bn=2nθn-1=.分组后结合等差数列求和公式计算. (3)由上可得出cn=•,可利用作商法研究数列{cn}的单调性,确定最小项存在与否. 【解析】 (l)证明:= ==(n≥2)又=  ∴数列是以为首项,公比为的等比数列.…(4分) (2)∵===2 ∴cosθn==,∴θn=,∴bn=2nθn-1=. Sn=b1+b2+…+bn==…(8分) (3)假设存在最小项,不防设为cn,∵==, ∴cn=|an|log2|an|=•,由cn≤cn+1 得≤ 即(2-n)≤1-n,∴(-1)n≥2-1. ∴n≥=3+,∵n为正整数,∴n≥5. 由cn≤cn-1 得n≤4+,n≤5.,∴n=5  故存在最小项,最小项为c5=…(12分)
复制答案
考点分析:
相关试题推荐
某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
查看答案
一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点
(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.
manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网=(manfen5.com 满分网sinmanfen5.com 满分网,1),manfen5.com 满分网=(cosmanfen5.com 满分网,cos2manfen5.com 满分网),f(x)=manfen5.com 满分网manfen5.com 满分网
(1)若f(x)=1,求cos(x+manfen5.com 满分网)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+manfen5.com 满分网c=b,求函数f(B)的取值范围.
查看答案
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18,27,9个工厂.
(1)求从A、B、C区中应分别抽取的工厂个数;
(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率.
查看答案
设两个向量manfen5.com 满分网=(λ+2,λ2-cox2α)和manfen5.com 满分网=(m,manfen5.com 满分网+sinα),其中λ,m,α为实数.若manfen5.com 满分网=2manfen5.com 满分网,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.