满分5 > 高中数学试题 >

已知函数f(x)=xlnx. (Ⅰ)求函数f(x)的极值点; (Ⅱ)若直线l过点...

已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)
(I)先对函数求导,研究函数的单调区间,根据F′(x)>0求得的区间是单调增区间,F′(x)<0求得的区间是单调减区间,求出极值. (II)求出曲线方程的导函数,利用导函数中即可求出切线方程的斜率,根据求出的斜率和已知点的坐标写出切线方程即可; (III)求导:g'(x)=lnx+1-a解g'(x)=0,得x=ea-1,得出在区间(0,ea-1)上,g(x)为递减函数,在区间(ea-1,+∞)上,g(x)为递增函数,下面对a进行讨论:当ea-1≤1,当1<ea-1<e,当ea-1≥e,从而得出g(x)的最小值. 【解析】 (Ⅰ)f'(x)=lnx+1,x>0,…(2分) 由f'(x)=0得,…(3分) 所以,f(x)在区间上单调递减,在区间上单调递增.…(4分) 所以,是函数f(x)的极小值点,极大值点不存在.…(5分) (Ⅱ)设切点坐标为(x,y),则y=xlnx,…(6分) 切线的斜率为lnx+1, 所以,,…(7分) 解得x=1,y=0,…(8分) 所以直线l的方程为x-y-1=0.…(9分) (Ⅲ)g(x)=xlnx-a(x-1), 则g'(x)=lnx+1-a,…(10分) 解g'(x)=0,得x=ea-1, 所以,在区间(0,ea-1)上,g(x)为递减函数, 在区间(ea-1,+∞)上,g(x)为递增函数.…(11分) 当ea-1≤1,即a≤1时,在区间[1,e]上,g(x)为递增函数, 所以g(x)最小值为g(1)=0.…(12分) 当1<ea-1<e,即1<a<2时,g(x)的最小值为g(ea-1)=a-ea-1.…(13分) 当ea-1≥e,即a≥2时,在区间[1,e]上,g(x)为递减函数, 所以g(x)最小值为g(e)=a+e-ae.…(14分) 综上,当a≤1时,g(x)最小值为0;当1<a<2时,g(x)的最小值a-ea-1;当a≥2时,g(x)的最小值为a+e-ae.
复制答案
考点分析:
相关试题推荐
已知一非零向量列{an}满足:a1=(1,1),an=(xn,yn)=manfen5.com 满分网
(1)证明:{|an|}是等比数列;
(2)设θn=<a n-1,an>(n≥2),bn=2nθn-1,Sn=b1+b2+…+bn,求Sn
(3)设cn=|an|log2|an|,问数列{cn}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
查看答案
某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
查看答案
一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点
(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.
manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网=(manfen5.com 满分网sinmanfen5.com 满分网,1),manfen5.com 满分网=(cosmanfen5.com 满分网,cos2manfen5.com 满分网),f(x)=manfen5.com 满分网manfen5.com 满分网
(1)若f(x)=1,求cos(x+manfen5.com 满分网)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+manfen5.com 满分网c=b,求函数f(B)的取值范围.
查看答案
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18,27,9个工厂.
(1)求从A、B、C区中应分别抽取的工厂个数;
(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.